Empirical Non-Parametric Estimation of the Fisher Information

被引:30
|
作者
Berisha, Visar [1 ,2 ]
Hero, Alfred O. [3 ]
机构
[1] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85004 USA
[2] Arizona State Univ, Dept Speech & Hearing Sci, Tempe, AZ 85004 USA
[3] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Cochlear implant modeling; Cramer-Rao lower bound; empirical Fisher information; f-divergence; graph signal processing;
D O I
10.1109/LSP.2014.2378514
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Fisher information matrix (FIM) is a foundational concept in statistical signal processing. The FIM depends on the probability distribution, assumed to belong to a smooth parametric family. Traditional approaches to estimating the FIM require estimating the probability distribution function (PDF), or its parameters, along with its gradient or Hessian. However, in many practical situations the PDF of the data is not known but the statistician has access to an observation sample for any parameter value. Here we propose a method of estimating the FIM directly from sampled data that does not require knowledge of the underlying PDF. The method is based on non-parametric estimation of an f-divergence over a local neighborhood of the parameter space and a relation between curvature of the f-divergence and the FIM. Thus we obtain an empirical estimator of the FIM that does not require density estimation and is asymptotically consistent. We empirically evaluate the validity of our approach using two experiments.
引用
收藏
页码:988 / 992
页数:5
相关论文
共 50 条
  • [1] NON-PARAMETRIC EMPIRICAL BAYES ESTIMATION OF QUANTILES
    STEWART, TJ
    [J]. SOUTH AFRICAN STATISTICAL JOURNAL, 1988, 22 (02) : 105 - 130
  • [2] Non-parametric estimation of copula based mutual information
    Krishnankutty, Baby Alpettiyil
    Ganapathy, Rajesh
    Sankaran, Paduthol Godan
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (06) : 1513 - 1527
  • [3] INVESTIGATING BIAS IN NON-PARAMETRIC MUTUAL INFORMATION ESTIMATION
    Zhu, Jie
    Bellanger, Jean-Jacques
    Shu, Huazhong
    Jeannes, Regine Le Bouquin
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 3971 - 3975
  • [4] Empirical non-parametric control charts: Estimation effects and corrections
    Albers, W
    Kallenberg, WCM
    [J]. JOURNAL OF APPLIED STATISTICS, 2004, 31 (03) : 345 - 360
  • [5] NON-PARAMETRIC STATISTICAL TESTS OF FISHER TYPE
    MARTINERIE, J
    [J]. ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1985, 61 (04): : P48 - P48
  • [6] Non-Parametric Estimation of Mutual Information through the Entropy of the Linkage
    Giraudo, Maria Teresa
    Sacerdote, Laura
    Sirovich, Roberta
    [J]. ENTROPY, 2013, 15 (12) : 5154 - 5177
  • [7] Non-parametric if and DOA estimation
    Djurovic, I
    Stankovic, L
    [J]. SEVENTH INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND ITS APPLICATIONS, VOL 1, PROCEEDINGS, 2003, : 149 - 152
  • [8] NON-PARAMETRIC ESTIMATION OF SURVIVORSHIP
    MEIER, P
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1955, 50 (270) : 589 - 589
  • [9] Non-parametric empirical Bayes procedure
    Sarhan, A
    [J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 2003, 80 (02) : 115 - 122
  • [10] NON-PARAMETRIC EMPIRICAL BAYES PROCEDURES
    JOHNS, MV
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1957, 28 (03): : 649 - 669