ASYMPTOTIC EVALUATIONS FOR MULTIVARIATE MELLIN CONVOLUTION OPERATORS

被引:0
|
作者
Popa, Dumitru [1 ]
机构
[1] Ovidius Univ Constanta, Dept Math, Bd Mamaia 124, Constanta 900527, Romania
关键词
multivariate Mellin convolution operators; Mellin derivatives; Convolution as an integral transform; multivariate Mellin-Gauss-Weierstrass operators; multivariate Hadamard operators; asymptotic evaluations; LINEAR-COMBINATIONS; FRACTIONAL CALCULUS; INTEGRATION;
D O I
10.3934/cqaa.2022131
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let n is an element of N and for every w > 0 let K-w : (0, infinity)(n)-> R be Borel measurable kernels. Under suitable assumptions, the multivariate Mellin convolution operator is defined by Z M-w (f) (s(1),..., s(n)) = (0,infinity)(n) K-w (t(1),..., t(n)) f (s(1)t(1), ..., sntn) dt /t(1) middot middot middot t(n.) In the paper we find the necessary and sufficient conditions for the convergence of the multivariate Mellin convolution operators. In the case of differentiable or twice differentiable functions we give the asymptotic evaluations for the multivariate Mellin convolution operators. We apply these general results for specific multivariate Mellin-Gauss-Weierstrass, Mellin-Poisson-Cauchy or Hadamard type convolution operators.
引用
收藏
页数:27
相关论文
共 50 条