SUBCOMPACT CARDINALS, TYPE OMISSION, AND LADDER SYSTEMS

被引:2
|
作者
Hayut, Yair [1 ]
Magidor, Menachem [1 ]
机构
[1] Hebrew Univ Jerusalem, Einstein Inst Math, Edmond J Safra Campus, IL-9190401 Jerusalem, Israel
关键词
supercompact cardinals; type omission; strong tree property;
D O I
10.1017/jsl.2022.11
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide a model theoretical and tree property-like characterization of lambda-pi(1)(1)- subcompactness and supercompactness. We explore the behavior of these combinatorial principles at accessible cardinals.
引用
收藏
页码:1111 / 1129
页数:19
相关论文
共 50 条
  • [1] Equiconsistencies at subcompact cardinals
    Itay Neeman
    John Steel
    Archive for Mathematical Logic, 2016, 55 : 207 - 238
  • [2] Equiconsistencies at subcompact cardinals
    Neeman, Itay
    Steel, John
    ARCHIVE FOR MATHEMATICAL LOGIC, 2016, 55 (1-2) : 207 - 238
  • [3] SUBCOMPACT CARDINALS, SQUARES, AND STATIONARY REFLECTION
    Brooke-Taylor, Andrew D.
    Friedman, Sy-David
    ISRAEL JOURNAL OF MATHEMATICS, 2013, 197 (01) : 453 - 473
  • [4] Subcompact cardinals, squares, and stationary reflection
    Andrew D. Brooke-Taylor
    Sy-David Friedman
    Israel Journal of Mathematics, 2013, 197 : 453 - 473
  • [5] Modeling of Periodic Rectangular Ladder-type Waveguide Systems
    Svetkin, M. I.
    Erokhin, A. I.
    2017 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM - SPRING (PIERS), 2017, : 2115 - 2119
  • [6] A BAIRE-TYPE THEOREM FOR CARDINALS
    WOLFSDORF, K
    JOURNAL OF SYMBOLIC LOGIC, 1983, 48 (04) : 1082 - 1089
  • [7] GENERIC LARGE CARDINALS AND SYSTEMS OF FILTERS
    Audrito, Giorgio
    Steila, Silvia
    JOURNAL OF SYMBOLIC LOGIC, 2017, 82 (03) : 860 - 892
  • [8] Modeling of Periodic Ladder-Type Waveguide Systems in the Terahertz Range
    A. N. Bogolyubov
    A. I. Erokhin
    M. I. Svetkin
    Computational Mathematics and Mathematical Physics, 2018, 58 : 915 - 924
  • [9] Modeling of Periodic Ladder-Type Waveguide Systems in the Terahertz Range
    Bogolyubov, A. N.
    Erokhin, A. I.
    Svetkin, M. I.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2018, 58 (06) : 915 - 924
  • [10] A LAVER-TYPE INDESTRUCTIBILITY FOR ACCESSIBLE CARDINALS
    BENDAVID, S
    JOURNAL OF SYMBOLIC LOGIC, 1987, 52 (04) : 1061 - 1061