Analytic Study on an Extended Higher-Order Nonlinear Schrodinger Equation for Heisenberg Ferromagnet

被引:0
|
作者
Wang, Yu-Feng [1 ]
Tian, Bo
Sun, Wen-Rong
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
ISOTROPIC KERR MEDIA; BOUND-STATES; CONSERVATION-LAWS; SOLITONS; WAVES;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Under investigation in this paper is an extended higher-order nonlinear Schrodinger equation, which describes the spin dynamics of a weak anisotropic Heisenberg ferromagnetic spin chain with site-dependent bilinear, biquadratic, and octupole-dipole interactions. Based on the Lax pair, infinitely many conservation laws are obtained. With the aid of an auxiliary function, bilinear forms and N-soliton solutions are presented explicitly. Figures are plotted to describe the bound states of the two and three solitons. Interaction periods and soliton separation factors of the bound states of solitons are analyzed. The third- and fourth-order perturbation coefficients alpha and gamma are directly proportional to the soliton velocities; they influence the interaction periods, but do not affect the soliton amplitudes. Bound states of the solitons propagate with certain velocities, and the varying interaction periods are discussed. Finally, the condition for the modulation instability is given. These results may be useful for the spin dynamics in Heisenberg ferromagnets.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Analytic studies on a generalized inhomogeneous higher-order nonlinear Schrodinger equation for the Heisenberg ferromagnetic spin chain
    Sun, Hao
    Shan, Wen-Rui
    Tian, Bo
    Wang, Ming
    Tan, Zhao
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 20 (03) : 711 - 718
  • [2] Interactional solutions of the extended nonlinear Schrodinger equation with higher-order operators
    Lou, Yu
    Zhang, Yi
    Ye, Rusuo
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2022, 99 (10) : 1989 - 2000
  • [3] Exact solutions to nonlinear Schrodinger equation and higher-order nonlinear Schrodinger equation
    Ren Ji
    Ruan Hang-Yu
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2008, 50 (03) : 575 - 578
  • [4] Collapse for the higher-order nonlinear Schrodinger equation
    Achilleos, V.
    Diamantidis, S.
    Frantzeskakis, D. J.
    Horikis, T. P.
    Karachalios, N. I.
    Kevrekidis, P. G.
    PHYSICA D-NONLINEAR PHENOMENA, 2016, 316 : 57 - 68
  • [5] A higher-order perturbation analysis of the nonlinear Schrodinger equation
    Bonetti, J.
    Hernandez, S. M.
    Fierens, P., I
    Grosz, D. F.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 72 : 152 - 161
  • [6] Painleve analysis of a higher-order nonlinear Schrodinger equation
    Sakovich, SY
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1997, 66 (09) : 2527 - 2529
  • [7] ASYMPTOTICS FOR THE HIGHER-ORDER DERIVATIVE NONLINEAR SCHRODINGER EQUATION
    Naumkin, Pavel, I
    Sanchez-Suarez, Isahi
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (04) : 1447 - 1478
  • [8] Dark solitons in an extended nonlinear Schrodinger equation with higher-order odd and even terms
    Triki, Houria
    Choudhuri, Amitava
    Porsezian, K.
    Dinda, P. Tchofo
    OPTIK, 2018, 164 : 661 - 670
  • [9] HEISENBERG-FERROMAGNET WITH HIGHER-ORDER EXCHANGE
    ADLER, J
    OITMAA, J
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1979, 12 (03): : 575 - 583
  • [10] Rogue-wave solutions of a higher-order nonlinear Schrodinger equation for inhomogeneous Heisenberg ferromagnetic system
    Jia, H. X.
    Ma, J. Y.
    Liu, Y. J.
    Liu, X. F.
    INDIAN JOURNAL OF PHYSICS, 2015, 89 (03) : 281 - 287