Multiscale adaptive regression models for neuroimaging data

被引:52
|
作者
Li, Yimei [1 ]
Zhu, Hongtu [1 ]
Shen, Dinggang [1 ]
Lin, Weili [1 ]
Gilmore, John H. [1 ]
Ibrahim, Joseph G. [1 ]
机构
[1] Univ N Carolina, Gillings Sch Global Publ Hlth, Dept Biostat, Chapel Hill, NC 27599 USA
基金
美国国家卫生研究院;
关键词
Kernel; Multiscale adaptive regression; Neuroimaging data; Propagation-separation; Smoothing; Sphere; Test statistics; STATISTICAL-ANALYSIS; FMRI;
D O I
10.1111/j.1467-9868.2010.00767.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Neuroimaging studies aim to analyse imaging data with complex spatial patterns in a large number of locations (called voxels) on a two-dimensional surface or in a three-dimensional volume. Conventional analyses of imaging data include two sequential steps: spatially smoothing imaging data and then independently fitting a statistical model at each voxel. However, conventional analyses suffer from the same amount of smoothing throughout the whole image, the arbitrary choice of extent of smoothing and low statistical power in detecting spatial patterns. We propose a multiscale adaptive regression model to integrate the propagation-separation approach with statistical modelling at each voxel for spatial and adaptive analysis of neuroimaging data from multiple subjects. The multiscale adaptive regression model has three features: being spatial, being hierarchical and being adaptive. We use a multiscale adaptive estimation and testing procedure to utilize imaging observations from the neighbouring voxels of the current voxel to calculate parameter estimates and test statistics adaptively. Theoretically, we establish consistency and asymptotic normality of the adaptive parameter estimates and the asymptotic distribution of the adaptive test statistics. Our simulation studies and real data analysis confirm that the multiscale adaptive regression model significantly outperforms conventional analyses of imaging data.
引用
收藏
页码:559 / 578
页数:20
相关论文
共 50 条
  • [1] MARM: Multiscale Adaptive Regression Models for Neuroimaging Data
    Zhu, Hongtu
    Li, Yimei
    Ibrahim, Joseph G.
    Lin, Weili
    Shen, Dinggang
    [J]. INFORMATION PROCESSING IN MEDICAL IMAGING, PROCEEDINGS, 2009, 5636 : 314 - +
  • [2] Two-Stage Multiscale Adaptive Regression Methods for Twin Neuroimaging Data
    Li, Yimei
    Gilmore, John H.
    Wang, Jiaping
    Styner, Martin
    Lin, Weili
    Zhu, Hongtu
    [J]. MULTIMODAL BRAIN IMAGE ANALYSIS, 2011, 7012 : 102 - +
  • [3] TwinMARM: Two-Stage Multiscale Adaptive Regression Methods for Twin Neuroimaging Data
    Li, Yimei
    Gilmore, John H.
    Wang, Jiaping
    Styner, Martin
    Lin, Weili
    Zhu, Hongtu
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2012, 31 (05) : 1100 - 1112
  • [4] Multiscale adaptive generalized estimating equations for longitudinal neuroimaging data
    Li, Yimei
    Gilmore, John H.
    Shen, Dinggang
    Styner, Martin
    Lin, Weili
    Zhu, Hongtu
    [J]. NEUROIMAGE, 2013, 72 : 91 - 105
  • [5] Multiscale Adaptive Marginal Analysis of Longitudinal Neuroimaging Data with Time-Varying Covariates
    Skup, Martha
    Zhu, Hongtu
    Zhang, Heping
    [J]. BIOMETRICS, 2012, 68 (04) : 1083 - 1092
  • [6] Spatial regression and multiscale approximations for sequential data assimilation in ocean models
    Chin, TM
    Mariano, AJ
    Chassignet, EP
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1999, 104 (C4) : 7991 - 8014
  • [7] Models of functional neuroimaging data
    Stephan, KE
    Mattout, J
    David, O
    Friston, KJ
    [J]. CURRENT MEDICAL IMAGING REVIEWS, 2006, 2 (01) : 15 - 34
  • [8] Tensor response quantile regression with neuroimaging data
    Wei, Bo
    Peng, Limin
    Guo, Ying
    Manatunga, Amita
    Stevens, Jennifer
    [J]. BIOMETRICS, 2023, 79 (03) : 1947 - 1958
  • [9] Tensor Regression with Applications in Neuroimaging Data Analysis
    Zhou, Hua
    Li, Lexin
    Zhu, Hongtu
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2013, 108 (502) : 540 - 552
  • [10] Membership Inference Attacks on Deep Regression Models for Neuroimaging
    Gupta, Umang
    Stripelis, Dimitris
    Lam, Pradeep K.
    Thompson, Paul M.
    Ambite, Jose Luis
    Steeg, Greg Ver
    [J]. MEDICAL IMAGING WITH DEEP LEARNING, VOL 143, 2021, 143 : 228 - 251