RETRACTED: Optimization of Digital Recommendation Service System for Tourist Attractions Based on Personalized Recommendation Algorithm (Retracted Article)

被引:2
|
作者
Wang, Yue [1 ]
Qin, Zhaoxiang [1 ]
Tang, Jun [2 ]
Zhang, Wei [3 ]
机构
[1] Inner Mongolia Normal Univ, Coll Tourism, Hohhot 010022, Peoples R China
[2] Inner Mongolia Univ Sci & Technol, Coll Sci, Baotou 014010, Peoples R China
[3] Inner Mongolia Normal Univ, Coll Govt Management, Hohhot 010022, Peoples R China
关键词
D O I
10.1155/2022/1191419
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
With the deepening of tourists' demand for tourism services, the personalization of online tourists has gradually become an application of personalized recommendation technology. According to the application requirements of personalized scenic spot recommendation, this paper uses social networks and Bayesian networks to fully mine the matching degree between users and scenic spots for personalized recommendation. Add social network factors to the recommendation of tourist attractions, and fully tap the social network relationship between users. First, the users are clustered by the coupling bidirectional clustering algorithm. Then, DBSCAN (density-based noise application spatial clustering) algorithm is used to cluster scenic spots. Finally, two stable user sets and scenic spot sets are applied to the personalized recommendation algorithm to predict the user's next upcoming scenic spot. The algorithm is compared with some traditional algorithms in the dataset. The algorithm deals with the similarity of user attributes and user behavior and uses content-based algorithm to deal with the relationship between scenic spots; com datasets have better performance.
引用
收藏
页数:9
相关论文
共 50 条