Uniform stabilization of a quasilinear plate model in hyperbolic thermoelasticity

被引:0
|
作者
Buriol, C. [1 ]
Menzala, G. P. [2 ,3 ]
机构
[1] Univ Fed Santa Maria, Dept Math, BR-97105900 Santa Maria, RS, Brazil
[2] Natl Lab Sci Computat LNCC MCTI, Rua Getulio Vargas 333, BR-25651070 Petropolis, RJ, Brazil
[3] Univ Fed Rio de Janeiro, Inst Math, Box 68530, Rio De Janeiro, RJ, Brazil
关键词
Cattaneo's law; dynamical plate models; exponential stabilization; EXPONENTIAL STABILITY; ASYMPTOTIC-BEHAVIOR; BEAM; SYSTEM;
D O I
10.1002/mma.3630
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study dynamic elastic deformations of a quasilinear plate model of Timoshenko's type under thermal effects, which are modeled by Cattaneo's law. We prove uniform exponential stabilization of the total energy as time approaches infinity. We show global wellposedeness of the model and build a convenient Lyapunov function, which allow us to conclude the main result of this work. Copyright (c) 2015 John Wiley & Sons, Ltd.
引用
收藏
页码:2146 / 2158
页数:13
相关论文
共 50 条