Impedance Characterization and Modeling of Lithium-Ion Batteries Considering the Internal Temperature Gradient

被引:73
|
作者
Dai, Haifeng [1 ,2 ]
Jiang, Bo [1 ,2 ]
Wei, Xuezhe [1 ,2 ]
机构
[1] Natl Fuel Cell Vehicle & Powertrain Syst Res & En, 4800 Caoan Rd, Shanghai 201804, Peoples R China
[2] Tongji Univ, Sch Automot Studies, 4800 Caoan Rd, Shanghai 201804, Peoples R China
基金
中国国家自然科学基金;
关键词
lithium-ion battery; impedance characterization; temperature gradient; discretization model; CHARGE ESTIMATION; STATE; MANAGEMENT; SPECTROSCOPY;
D O I
10.3390/en11010220
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Battery impedance is essential to the management of lithium-ion batteries for electric vehicles (EVs), and impedance characterization can help to monitor and predict the battery states. Many studies have been undertaken to investigate impedance characterization and the factors that influence impedance. However, few studies regarding the influence of the internal temperature gradient, which is caused by heat generation during operation, have been presented. We have comprehensively studied the influence of the internal temperature gradient on impedance characterization and the modeling of battery impedance, and have proposed a discretization model to capture battery impedance characterization considering the temperature gradient. Several experiments, including experiments with artificial temperature gradients, are designed and implemented to study the influence of the internal temperature gradient on battery impedance. Based on the experimental results, the parameters of the non-linear impedance model are obtained, and the relationship between the parameters and temperature is further established. The experimental results show that the temperature gradient will influence battery impedance and the temperature distribution can be considered to be approximately linear. The verification results indicate that the proposed discretization model has a good performance and can be used to describe the actual characterization of the battery with an internal temperature gradient.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Simplified Modeling and Characterization of the Internal Impedance of Lithium-Ion Batteries for Automotive Applications
    Scavuzzo, S.
    Ferraris, A.
    Airale, A. G.
    Carello, M.
    Locorotondo, E.
    Pugi, L.
    Berzi, L.
    Pierini, M.
    2019 AEIT INTERNATIONAL CONFERENCE OF ELECTRICAL AND ELECTRONIC TECHNOLOGIES FOR AUTOMOTIVE (AEIT AUTOMOTIVE), 2019,
  • [2] Modeling the Impedance Characterization of Prismatic Lithium-Ion Batteries
    Ghalkhani, Maryam
    Mehrtash, Moein
    12TH INTERNATIONAL CONFERENCE INTERDISCIPLINARITY IN ENGINEERING (INTER-ENG 2018), 2019, 32 : 762 - 767
  • [3] Guidelines for the Characterization of the Internal Impedance of Lithium-Ion Batteries in PHM Algorithms
    Perez, Aramis
    Benavides, Matias
    Rozas, Heraldo
    Seria, Sebastian
    Orchard, Marcos
    INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT, 2018, 9
  • [4] Modeling of temperature characteristics of lithium-ion batteries considering the state dependency and its robust estimation of internal temperature
    Zeng, Xiaoyong
    Chen, Laien
    Xia, Xiangyang
    Sun, Yaoke
    Yue, Jiahui
    JOURNAL OF POWER SOURCES, 2025, 633
  • [5] Impedance-Based Online Internal Temperature Estimation for Lithium-Ion Batteries Considering the Parasitic Parameters of Power Wires
    Geng, Anqi
    Hu, Haitao
    Chen, Junyu
    Ge, Yinbo
    He, Zhengyou
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2025, 40 (05) : 6454 - 6458
  • [6] The impedance of lithium-ion batteries
    T. L. Kulova
    V. A. Tarnopol’skii
    A. M. Skundin
    Russian Journal of Electrochemistry, 2009, 45 : 38 - 44
  • [7] The impedance of lithium-ion batteries
    Kulova, T. L.
    Tarnopol'skii, V. A.
    Skundin, A. M.
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2009, 45 (01) : 38 - 44
  • [8] Effects of Temperature on Internal Resistances of Lithium-Ion Batteries
    Ahmed, Sazzad Hossain
    Kang, Xiaosong
    Shrestha, S. O. Bade
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2015, 137 (03):
  • [9] Internal Integrated Temperature Sensor for Lithium-Ion Batteries
    Yang, Pengfei
    Su, Kai
    Weng, Shijie
    Han, Jiang
    Zhang, Qian
    Li, Zhiqiang
    Peng, Xiaoli
    Xiang, Yong
    SENSORS, 2025, 25 (02)
  • [10] Electrical Modeling and Impedance Spectra of Lithium-Ion Batteries and Supercapacitors
    Bae, Jin-Yong
    BATTERIES-BASEL, 2023, 9 (03):