Biclustering;
Generalized plaid models;
Quasi-likelihoods;
Markov chain Monte Carlo;
D O I:
10.1016/j.neucom.2011.10.011
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
The problem of biclustering has attracted considerable attention in diverse research areas such as functional genomics, text mining, and market research, where there is a need to simultaneously cluster rows and columns of a data matrix. In this paper, we propose a family of generalized plaid models for biclustering, where the layer estimation is regularized by Bayesian Information Criterion (BIC). The new models have broadened the scope of ordinary plaid models by specifying the variance function, making the models adaptive to the entire distribution of the noise term. A formal test is provided for finding significant layers. A Metropolis algorithm is also developed to calculate the maximum likelihood estimators of unknown parameters in the proposed models. Three simulation studies and the applications to two real datasets are reported, which demonstrate that our procedure is promising. (C) 2011 Elsevier B.V. All rights reserved.
机构:
Shahid Beheshti Univ Med Sci, Fac Paramed Sci, Dept Biostat, Tehran 1971653313, IranShahid Beheshti Univ Med Sci, Fac Paramed Sci, Dept Biostat, Tehran 1971653313, Iran
Baghestani, Ahmad Reza
Tabatabaei, Seyyed Mohammad
论文数: 0引用数: 0
h-index: 0
机构:
Shahid Beheshti Univ Med Sci, Fac Paramed Sci, Dept Med Informat, Tehran 1971653313, IranShahid Beheshti Univ Med Sci, Fac Paramed Sci, Dept Biostat, Tehran 1971653313, Iran
Tabatabaei, Seyyed Mohammad
Bashi, Naghme Khadem
论文数: 0引用数: 0
h-index: 0
机构:
Shahid Beheshti Univ Med Sci, Fac Paramed Sci, English Language Dept, Tehran 1971653313, IranShahid Beheshti Univ Med Sci, Fac Paramed Sci, Dept Biostat, Tehran 1971653313, Iran
Bashi, Naghme Khadem
Tavirani, Mostafa Rezaei
论文数: 0引用数: 0
h-index: 0
机构:
Shahid Beheshti Univ Med Sci, Fac Paramed Sci, Prote Res Ctr, Tehran 1971653313, IranShahid Beheshti Univ Med Sci, Fac Paramed Sci, Dept Biostat, Tehran 1971653313, Iran