Unified fractional integral formulae for the Fox-Wright generalized hypergeometric function

被引:0
|
作者
Saxena, R. K. [1 ]
Ram, J. [1 ]
Chandak, S. [1 ]
Kalla, S. L. [2 ]
机构
[1] Jai Narain Vyas Univ, Dept Math & Stat, Jodhpur, Rajasthan, India
[2] Kuwait Univ, Dept Math & Comp Sci, Safat 13060, Kuwait
来源
关键词
generalized hypergeometric functions; Riemann-Liouville Operators;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The object of this article is to evaluate two unified fractional integrals involving the product of Fox-Wright generalized hypergeometric function (p)psi(q), Appell function - F-3 and a general class of multivariable polynomials. These integrals are further applied in proving two theorems on Saigo - Maeda operators of fractional integration. The results obtained provide unification and extension of the results given earlier by Saigo, Saigo and Kilbas, Saxena and Saigo etc. The results are obtained in a compact form and are useful in preparing some tables of Erdelyi - Kober operators, Riemann - Liouville operator, Weyl operator, Saigo operators and Saigo- Maeda operators of fractional integration.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 50 条