Diffusion of Charged Species in Liquids

被引:4
|
作者
del Rio, J. A. [1 ]
Whitaker, S. [2 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Energias Renovables, AP 34, Temixco 62580, Mor, Mexico
[2] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
关键词
POISSON-NERNST-PLANCK; CONTINUUM-THEORIES; ION CHANNELS; MECHANICS; EQUATIONS; TRANSPORT; MODELS; TESTS;
D O I
10.1038/srep35211
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this study the laws of mechanics for multi-component systems are used to develop a theory for the diffusion of ions in the presence of an electrostatic field. The analysis begins with the governing equation for the species velocity and it leads to the governing equation for the species diffusion velocity. Simplification of this latter result provides a momentum equation containing three dominant forces: (a) the gradient of the partial pressure, (b) the electrostatic force, and (c) the diffusive drag force that is a central feature of the Maxwell-Stefan equations. For ideal gas mixtures we derive the classic Nernst-Planck equation. For liquid-phase diffusion we encounter a situation in which the Nernst-Planck contribution to diffusion differs by several orders of magnitude from that obtained for ideal gases.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Diffusion of Charged Species in Liquids
    J. A. del Río
    S. Whitaker
    Scientific Reports, 6
  • [2] LIFETIME OF CHARGED SPECIES IN IRRADIATED DIELECTRIC LIQUIDS
    HUMMEL, A
    JOURNAL OF CHEMICAL PHYSICS, 1968, 49 (11): : 4840 - &
  • [3] LIFETIME OF CHARGED SPECIES IN IRRADIATED DIELECTRIC LIQUIDS
    HUMMEL, A
    ADVANCES IN CHEMISTRY SERIES, 1968, (82): : 541 - &
  • [4] Thermal diffusion of ionic species in charged nanochannels
    Chen, Wei Qiang
    Sedighi, Majid
    Jivkov, Andrey P. P.
    NANOSCALE, 2022, 15 (01) : 215 - 229
  • [5] Reaction-diffusion processes of electrically charged species
    Gajewski, H
    Groger, K
    MATHEMATISCHE NACHRICHTEN, 1996, 177 : 109 - 130
  • [6] Monte Carlo impurity diffusion simulation considering charged species
    Hane, M
    Ikezawa, T
    Gilmer, GH
    SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES 2001, 2001, : 18 - 21
  • [7] Diffusion Limit of Kinetic Equations for Multiple Species Charged Particles
    Hao Wu
    Tai-Chia Lin
    Chun Liu
    Archive for Rational Mechanics and Analysis, 2015, 215 : 419 - 441
  • [8] Diffusion Limit of Kinetic Equations for Multiple Species Charged Particles
    Wu, Hao
    Lin, Tai-Chia
    Liu, Chun
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 215 (02) : 419 - 441
  • [9] Finite-Size Charged Species Diffusion and pH Change in Nanochannels
    Di Trani, Nicola
    Pimpinelli, Alberto
    Grattoni, Alessandro
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (10) : 12246 - 12255
  • [10] DIFFUSION IN LIQUIDS
    MCCALL, DW
    DOUGLASS, DC
    ANDERSON, EW
    JOURNAL OF CHEMICAL PHYSICS, 1959, 31 (06): : 1555 - 1557