Estimation of multistate survival model

被引:0
|
作者
Chowdhury, RI [1 ]
Islam, MA [1 ]
Shah, MA [1 ]
Mohsin, SA [1 ]
机构
[1] Kuwait Univ, Dept Hlth Informat Adm, Safat 13060, Kuwait
关键词
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The longitudinal data analysis generally involves the problems of censoring and repeated observations. The proportional hazards model (Cox, 1972) deals with the modelling of longitudinal data for partially censored data for a single time observation for each individual. Kay (1982) showed an extension of the proportional hazards model for a number of transient states. Islam and Singh (1992) showed the multistate generalization of proportional hazards model. Islam and Singh (1992) did not provide any application in their paper. In this paper, an outline for solving equation for estimating parameters of the multistate survival model (Islam and Singh, 1992) with an application to diabetes data set from a hospital in Bangladesh is discussed. The multistate survival model for partially censored data involves a number of inter communicating and absorbing states and a large number of parameter to be estimated on the basis of interactive solution of simultaneous equations. For estimating parameters, the Interactive Scientific Processor (ISP), a statistical software package, has been used. The multistate survival model estimated in this can be extensively used for solving real life problems.
引用
收藏
页码:608 / 611
页数:4
相关论文
共 50 条
  • [1] Relative survival multistate Markov model
    Huszti, Ella
    Abrahamowicz, Michal
    Alioum, Ahmadou
    Binquet, Christine
    Quantin, Catherine
    STATISTICS IN MEDICINE, 2012, 31 (03) : 269 - 286
  • [2] Estimation of the mean quality-adjusted survival using a multistate model for the sojourn times
    Tunes-da-Silva, Gisela
    Sen, Pranab K.
    Pedroso-de-Lima, Antonio Carlos
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (08) : 2267 - 2282
  • [3] Quality-adjusted survival estimation with periodic observations: A multistate survival analysis approach
    Chen, PL
    Sen, PK
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2004, 33 (06) : 1327 - 1339
  • [4] A multistate model of survival prediction and event monitoring in prefibrotic myelofibrosis
    Carobbio, Alessandra
    Guglielmelli, Paola
    Rumi, Elisa
    Cavalloni, Chiara
    De Stefano, Valerio
    Betti, Silvia
    Rambaldi, Alessandro
    Finazzi, Maria Chiara
    Thiele, Juergen
    Vannucchi, Alessandro M.
    Tefferi, Ayalew
    Barbui, Tiziano
    BLOOD CANCER JOURNAL, 2020, 10 (10)
  • [5] A multistate model of survival prediction and event monitoring in prefibrotic myelofibrosis
    Alessandra Carobbio
    Paola Guglielmelli
    Elisa Rumi
    Chiara Cavalloni
    Valerio De Stefano
    Silvia Betti
    Alessandro Rambaldi
    Maria Chiara Finazzi
    Juergen Thiele
    Alessandro M. Vannucchi
    Ayalew Tefferi
    Tiziano Barbui
    Blood Cancer Journal, 10
  • [6] A multistate additive relative survival semi-Markov model
    Gillaizeau, Florence
    Dantan, Etienne
    Giral, Magali
    Foucher, Yohann
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2017, 26 (04) : 1700 - 1711
  • [7] ESTIMATION OF WORKING LIFE EXPECTANCY: APPLICATION OF A MULTISTATE MARKOV MODEL
    Chungkham, Holendro Singh
    INNOVATION IN AGING, 2023, 7 : 314 - 315
  • [8] A semi-Markov multistate model for estimation of the mean quality-adjusted survival for non-progressive processes
    Tunes-da-Silva, Gisela
    Pedroso-de-Lima, Antonio C.
    Sen, Pranab K.
    LIFETIME DATA ANALYSIS, 2009, 15 (02) : 216 - 240
  • [9] A semi-Markov multistate model for estimation of the mean quality-adjusted survival for non-progressive processes
    Gisela Tunes-da-Silva
    Antonio C. Pedroso-de-Lima
    Pranab K. Sen
    Lifetime Data Analysis, 2009, 15 : 216 - 240
  • [10] Exact results for survival probability in the multistate Landau-Zener model
    Volkov, MV
    Ostrovsky, VN
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2004, 37 (20) : 4069 - 4084