Advances in nanobiotechnology-propelled multidrug resistance circumvention of cancer

被引:18
|
作者
Chen, Jie [1 ,2 ]
Yu, Xin [3 ]
Liu, Xinyu [3 ]
Ni, Jinliang [1 ]
Yang, Guangcan [1 ]
Zhang, Kun [1 ]
机构
[1] Tongji Univ, Sch Med, Cent Lab, Shanghai Tenth Peoples Hosp, 301 Yan Chang Zhong Rd, Shanghai 200072, Peoples R China
[2] Shanghai Jiao Tong Univ, Shanghai Chest Hosp, Dept Med Ultrasound, 241 West Huaihai Rd, Shanghai 200030, Peoples R China
[3] Tongji Univ, Sch Med, Dept Med Oncol, Shanghai Pulm Hosp,Thorac Canc Inst, 507 Zheng Min Rd, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
NEAR-INFRARED LIGHT; IRON-OXIDE NANOPARTICLES; DRUG-DELIVERY SYSTEM; CO-DELIVERY; PHOTODYNAMIC THERAPY; BREAST-CANCER; MAGNETIC HYPERTHERMIA; POLYMERIC NANOPARTICLES; SYNERGISTIC TREATMENT; SILICA NANOPARTICLES;
D O I
10.1039/d2nr04418h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Multidrug resistance (MDR) is one of the main reasons for the failure of tumor chemotherapy and has a negative influence on the therapeutic effect. MDR is primarily attributable to two mechanisms: the activation of efflux pumps for drugs, which can transport intracellular drug molecules from cells, and other mechanisms not related to efflux pumps, e.g., apoptosis prevention, strengthened DNA repair, and strong oxidation resistance. Nanodrug-delivery systems have recently attracted much attention, showing some unparalleled advantages such as drug targeting and reduced drug efflux, drug toxicity and side effects in reversing MDR. Notably, in drug-delivery platforms based on nanotechnology, multiple therapeutic strategies are integrated into one system, which can compensate for the limitations of individual strategies. In this review, the mechanisms of tumor MDR as well as common vectors and nanocarrier-combined therapy strategies to reverse MDR were summarized to promote the understanding of the latest progress in improving the efficiency of chemotherapy and synergistic strategies. In particular, the adoption of nanotechnology has been highlighted and the principles underlying this phenomenon have been elucidated, which may provide guidance for the development of more effective anticancer strategies.
引用
收藏
页码:12984 / 12998
页数:15
相关论文
共 50 条
  • [1] Circumvention of multidrug resistance
    Nooter, K
    Stoter, G
    EUROPEAN JOURNAL OF CANCER, 1995, 31A : 302 - 302
  • [2] MULTIDRUG RESISTANCE AND ITS CIRCUMVENTION
    BECK, WT
    EUROPEAN JOURNAL OF CANCER, 1990, 26 (04) : 513 - 515
  • [3] PHARMACOLOGICAL CIRCUMVENTION OF MULTIDRUG-RESISTANCE
    FORD, JM
    HAIT, WN
    CYTOTECHNOLOGY, 1993, 12 (1-3) : 171 - 212
  • [4] Targeting Microparticle Biogenesis: A Novel Approach to the Circumvention of Cancer Multidrug Resistance
    Roseblade, Ariane
    Luk, Frederick
    Ung, Alison
    Bebawy, Mary
    CURRENT CANCER DRUG TARGETS, 2015, 15 (03) : 205 - 214
  • [5] MULTIDRUG-RESISTANCE - CLINICAL OPPORTUNITIES IN DIAGNOSIS AND CIRCUMVENTION
    CHAN, HSL
    DEBOER, G
    THORNER, PS
    HADDAD, G
    GALLIE, BL
    LING, V
    HEMATOLOGY-ONCOLOGY CLINICS OF NORTH AMERICA, 1994, 8 (02) : 383 - 410
  • [6] FLOW CYTOMETRIC EVALUATION OF MULTIDRUG-RESISTANCE CIRCUMVENTION
    LEONCE, S
    PIERRE, A
    ATASSI, G
    BULLETIN DU CANCER, 1995, 82 (02) : 114 - 116
  • [7] CIRCUMVENTION OF MULTIDRUG-RESISTANCE IN EXPERIMENTAL AND CLINICAL ONCOLOGY
    DONENKO, FV
    SITDIKOVA, SM
    MOROZ, LV
    VOPROSY ONKOLOGII, 1991, 37 (11-12) : 1034 - 1041
  • [8] VERAPAMIL - A PROMISING AGENT FOR CIRCUMVENTION OF MULTIDRUG-RESISTANCE
    HARDER, S
    ONKOLOGIE, 1991, 14 (03): : 212 - 217
  • [9] Cancer multidrug resistance: mechanisms involved and strategies for circumvention using a drug delivery system
    Kibria, Golam
    Hatakeyama, Hiroto
    Harashima, Hideyoshi
    ARCHIVES OF PHARMACAL RESEARCH, 2014, 37 (01) : 4 - 15
  • [10] Cancer multidrug resistance: mechanisms involved and strategies for circumvention using a drug delivery system
    Golam Kibria
    Hiroto Hatakeyama
    Hideyoshi Harashima
    Archives of Pharmacal Research, 2014, 37 : 4 - 15