On Weierstrass mock modular forms and a dimension formula for certain vertex operator algebras

被引:3
|
作者
Beneish, Lea [1 ]
Mertens, Michael H. [2 ]
机构
[1] Emory Univ, Dept Math & Comp Sci, 400 Dowman Dr, Atlanta, GA 30322 USA
[2] Max Planck Inst Math, Vivatsgasse 7, D-53111 Bonn, Germany
关键词
Weierstrass mock modular forms; VOAs; Orbifold theories; MEROMORPHIC JACOBI FORMS; MOONSHINE; INVARIANCE; STRINGS;
D O I
10.1007/s00209-020-02499-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using techniques from the theory of mock modular forms and harmonic Maass forms, especially Weierstrass mock modular forms, we establish several dimension formulas for certain holomorphic, strongly rational vertex operator algebras, complementing previous work by van Ekeren, Moller, and Scheithauer.
引用
收藏
页码:59 / 80
页数:22
相关论文
共 50 条
  • [1] On Weierstrass mock modular forms and a dimension formula for certain vertex operator algebras
    Lea Beneish
    Michael H. Mertens
    Mathematische Zeitschrift, 2021, 297 : 59 - 80
  • [2] Modular Forms and Weierstrass Mock Modular Forms
    Clemm, Amanda
    MATHEMATICS, 2016, 4 (01):
  • [3] Modular framed vertex operator algebras and ■-forms
    Chongying Dong
    Ching Hung Lam
    Li Ren
    Science China(Mathematics), 2025, 68 (04) : 785 - 806
  • [4] Relations for Modular Forms from Vertex Operator Algebras
    Zuevsky, Alexander
    XXV INTERNATIONAL CONFERENCE ON INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES (ISQS-25), 2018, 965
  • [5] ON JACOBI-WEIERSTRASS MOCK MODULAR FORMS
    Alfes-Neumann, Claudia
    Funke, Jens
    Mertens, Michael H.
    Rosu, Eugenia
    arXiv, 2023,
  • [6] Weierstrass mock modular forms and elliptic curves
    Alfes C.
    Griffin M.
    Ono K.
    Rolen L.
    Research in Number Theory, 1 (1)
  • [7] On Jacobi-Weierstrass mock modular forms
    Alfes, Claudia
    Funke, Jens
    Mertens, Michael H.
    Rosu, Eugenia
    ADVANCES IN MATHEMATICS, 2025, 465
  • [8] Modular framed vertex operator algebras and Z[1/2]-forms
    Dong, Chongying
    Lam, Ching Hung
    Ren, Li
    SCIENCE CHINA-MATHEMATICS, 2025, 68 (04) : 785 - 806
  • [9] Vertex operator algebras and modular invariance
    Miyamoto, Masahiko
    VERTEX OPERATOR ALGEBRAS, NUMBER THEORY AND RELATED TOPICS, 2020, 753 : 233 - 250
  • [10] Vertex operator algebras and Jacobi forms
    University of California, Santa Cruz