Continuous Mapping Convolution for Large-Scale Point Clouds Semantic Segmentation

被引:9
|
作者
Yan, Kunping [1 ]
Hu, Qingyong [2 ]
Wang, Hanyun [3 ]
Huang, Xiaohong [4 ]
Li, Li [3 ]
Ji, Song [3 ]
机构
[1] China Univ Min & Technol Beijing, Sch Mech Elect & Informat Engn, Beijing 100083, Peoples R China
[2] Univ Oxford, Dept Comp Sci, Oxford OX1 2JD, England
[3] Informat Engn Univ, Sch Surveying & Mapping, Zhengzhou 450001, Peoples R China
[4] Sun Yat Sen Univ, Sch Elect & Commun Engn, Guangzhou 510275, Peoples R China
关键词
Kernel; Convolution; Three-dimensional displays; Semantics; Cloud computing; Feature extraction; Encoding; Continuous convolution; large-scale; point clouds; semantic segmentation;
D O I
10.1109/LGRS.2021.3107006
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In this letter, we introduce MappingConvSeg, a continuous convolution network for semantic segmentation of large-scale point clouds. In particular, a conceptually simple, end-to-end learnable, and continuous convolution operator is proposed for learning spatial correlation of unstructured 3-D point clouds. For each local point set, the unstructured point features are first mapped onto a series of learned kernel points based on the spatial relationship, and the continuous convolution is then applied to capture specific local geometrical patterns. Taking the proposed mapping convolution operation as the building block, a hierarchical network is then built for large-scale point cloud semantic segmentation. Experimental results conducted on two public benchmarks, including Toronto-3D and Stanford large-scale 3-D Indoor Spaces (S3DIS) dataset, demonstrate the superiority of the proposed method.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] EDGE-CONVOLUTION POINT NET FOR SEMANTIC SEGMENTATION OF LARGE-SCALE POINT CLOUDS
    Contreras, Jhonatan
    Denzler, Joachim
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 5236 - 5239
  • [2] Feature Graph Convolution Network With Attentive Fusion for Large-Scale Point Clouds Semantic Segmentation
    Chen, Jun
    Chen, Yiping
    Wang, Cheng
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [3] Semantic segmentation of large-scale point clouds with neighborhood uncertainty
    Bao, Yong
    Wen, Haibiao
    Zhang, Baoqing
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (21) : 60949 - 60964
  • [4] GSIP: Green Semantic Segmentation of Large-Scale Indoor Point Clouds
    Zhang, Min
    Kadam, Pranav
    Liu, Shan
    Kuo, C. -C. Jay
    [J]. PATTERN RECOGNITION LETTERS, 2022, 164 : 9 - 15
  • [5] Learning Semantic Segmentation of Large-Scale Point Clouds With Random Sampling
    Hu, Qingyong
    Yang, Bo
    Xie, Linhai
    Rosa, Stefano
    Guo, Yulan
    Wang, Zhihua
    Trigoni, Niki
    Markham, Andrew
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (11) : 8338 - 8354
  • [6] LessNet: Lightweight and efficient semantic segmentation for large-scale point clouds
    Feng, Guoqiang
    Li, Weilong
    Zhao, Xiaolin
    Yang, Xuemeng
    Kong, Xin
    Huang, TianXin
    Cui, Jinhao
    [J]. IET CYBER-SYSTEMS AND ROBOTICS, 2022, 4 (02) : 107 - 115
  • [7] BushNet: Effective semantic segmentation of bush in large-scale point clouds
    Wei, Hejun
    Xu, Enyong
    Zhang, Jinlai
    Meng, Yanmei
    Wei, Jin
    Dong, Zhen
    Li, Zhengqiang
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 193
  • [8] Semantic segmentation of large-scale point clouds based on dilated nearest neighbors graph
    Lei Wang
    Jiaji Wu
    Xunyu Liu
    Xiaoliang Ma
    Jun Cheng
    [J]. Complex & Intelligent Systems, 2022, 8 : 3833 - 3845
  • [9] Advancements in Semantic Segmentation Methods for Large-Scale Point Clouds Based on Deep Learning
    Ai Da
    Zhang Xiaoyang
    Xu Ce
    Qin Siyu
    Yuan Hui
    [J]. LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (12)
  • [10] Semantic segmentation of large-scale point clouds based on dilated nearest neighbors graph
    Wang, Lei
    Wu, Jiaji
    Liu, Xunyu
    Ma, Xiaoliang
    Cheng, Jun
    [J]. COMPLEX & INTELLIGENT SYSTEMS, 2022, 8 (05) : 3833 - 3845