Joint species distribution modelling with the r-package Hmsc

被引:262
|
作者
Tikhonov, Gleb [1 ,2 ]
Opedal, Oystein H. [2 ,3 ]
Abrego, Nerea [4 ]
Lehikoinen, Aleksi [5 ]
de Jonge, Melinda M. J. [6 ]
Oksanen, Jari [7 ]
Ovaskainen, Otso [2 ,3 ]
机构
[1] Aalto Univ, Dept Comp Sci, Espoo, Finland
[2] Univ Helsinki, Organismal & Evolutionary Biol Res Programme, Helsinki, Finland
[3] Norwegian Univ Sci & Technol, Ctr Biodivers Dynam, Dept Biol, Trondheim, Norway
[4] Univ Helsinki, Dept Agr Sci, Helsinki, Finland
[5] Univ Helsinki, Helsinki Lab Ornithol, Finnish Museum Nat Hist, Helsinki, Finland
[6] Radboud Univ Nijmegen, Inst Water & Wetland Res, Dept Environm Sci, Nijmegen, Netherlands
[7] Univ Helsinki, Bot Unit, Finnish Museum Nat Hist, Helsinki, Finland
来源
METHODS IN ECOLOGY AND EVOLUTION | 2020年 / 11卷 / 03期
基金
欧洲研究理事会; 芬兰科学院;
关键词
community ecology; community modelling; community similarity; hierarchical modelling of species communities; joint species distribution modelling; multivariate data; species distribution modelling; FRAMEWORK;
D O I
10.1111/2041-210X.13345
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Joint Species Distribution Modelling (JSDM) is becoming an increasingly popular statistical method for analysing data in community ecology. Hierarchical Modelling of Species Communities (HMSC) is a general and flexible framework for fitting JSDMs. HMSC allows the integration of community ecology data with data on environmental covariates, species traits, phylogenetic relationships and the spatio-temporal context of the study, providing predictive insights into community assembly processes from non-manipulative observational data of species communities. The full range of functionality of HMSC has remained restricted to Matlab users only. To make HMSC accessible to the wider community of ecologists, we introduce Hmsc 3.0, a user-friendly r implementation. We illustrate the use of the package by applying Hmsc 3.0 to a range of case studies on real and simulated data. The real data consist of bird counts in a spatio-temporally structured dataset, environmental covariates, species traits and phylogenetic relationships. Vignettes on simulated data involve single-species models, models of small communities, models of large species communities and models for large spatial data. We demonstrate the estimation of species responses to environmental covariates and how these depend on species traits, as well as the estimation of residual species associations. We demonstrate how to construct and fit models with different types of random effects, how to examine MCMC convergence, how to examine the explanatory and predictive powers of the models, how to assess parameter estimates and how to make predictions. We further demonstrate how Hmsc 3.0 can be applied to normally distributed data, count data and presence-absence data. The package, along with the extended vignettes, makes JSDM fitting and post-processing easily accessible to ecologists familiar with r.
引用
收藏
页码:442 / 447
页数:6
相关论文
共 50 条
  • [1] Accelerating joint species distribution modelling with Hmsc-HPC by GPU porting
    Ur Rahman, Anis
    Tikhonov, Gleb
    Oksanen, Jari
    Rossi, Tuomas
    Ovaskainen, Otso
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (09)
  • [2] R-package LNIRT for joint modeling of response accuracy and times
    Fox, Jean-Paul
    Klotzke, Konrad
    Simsek, Ahmet Salih
    [J]. PEERJ COMPUTER SCIENCE, 2023, 9 : 1 - 33
  • [3] R-package LNIRT for joint modeling of response accuracy and times
    Fox, Jean-Paul
    Klotzke, Konrad
    Simsek, Ahmet Salih
    [J]. PeerJ Computer Science, 2023, 9
  • [4] The ZOON R package for reproducible and shareable species distribution modelling
    Golding, Nick
    August, Tom A.
    Lucas, Tim C. D.
    Gavaghan, David J.
    van Loon, E. Emiel
    McInerny, Greg
    [J]. METHODS IN ECOLOGY AND EVOLUTION, 2018, 9 (02): : 260 - 268
  • [5] mmSAR: an R-package for multimodel species-area relationship inference
    Guilhaumon, Francois
    Mouillot, David
    Gimenez, Olivier
    [J]. ECOGRAPHY, 2010, 33 (02) : 420 - 424
  • [6] HiCcompare: an R-package for joint normalization and comparison of HI-C datasets
    Stansfield, John C.
    Cresswell, Kellen G.
    Vladimirov, Vladimir I.
    Dozmorov, Mikhail G.
    [J]. BMC BIOINFORMATICS, 2018, 19
  • [7] sabinaNSDM: An R package for spatially nested hierarchical species distribution modelling
    Mateo, Ruben G.
    Morales-Barbero, Jennifer
    Zarzo-Arias, Alejandra
    Lima, Herlander
    Gomez-Rubio, Virgilio
    Goicolea, Teresa
    [J]. METHODS IN ECOLOGY AND EVOLUTION, 2024,
  • [8] HiCcompare: an R-package for joint normalization and comparison of HI-C datasets
    John C. Stansfield
    Kellen G. Cresswell
    Vladimir I. Vladimirov
    Mikhail G. Dozmorov
    [J]. BMC Bioinformatics, 19
  • [9] flexsdm: An r package for supporting a comprehensive and flexible species distribution modelling workflow
    Elias Velazco, Santiago Jose
    Rose, Miranda Brooke
    Alves de Andrade, Andre Felipe
    Minoli, Ignacio
    Franklin, Janet
    [J]. METHODS IN ECOLOGY AND EVOLUTION, 2022, 13 (08): : 1661 - 1669
  • [10] A modelling framework and R-package for evaluating system performance under hydroclimate variability and change
    Bennett, Bree
    Devanand, Anjana
    Culley, Sam
    Westra, Seth
    Guo, Danlu
    Maier, Holger R.
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2021, 139