Evaluating convolution sums of the divisor function by quasimodular forms

被引:45
|
作者
Royer, Emmanuel [1 ]
机构
[1] Univ Blaise Pascal, Math Lab, Campus Univ Cezeaux, F-63177 Aubiere, France
关键词
quasimodular forms; divisor functions; arithmetical identities;
D O I
10.1142/S1793042107000924
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide a systematic method to compute arithmetic sums including some previously computed by Alaca, Besge, Cheng, Glaisher, Huard, Lahiri, Lemire, Melfi, Ou, Ramanujan, Spearman and Williams. Our method is based on quasimodular forms. This extension of modular forms has been constructed by Kaneko and Zagier.
引用
收藏
页码:231 / 261
页数:31
相关论文
共 50 条
  • [1] Evaluation of Some Convolution Sums by Quasimodular Forms
    Kendirli, Baris
    [J]. EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2015, 8 (01): : 81 - 110
  • [2] Convolution sums involving the divisor function
    Cheng, N
    Williams, KS
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2004, 47 : 561 - 572
  • [3] Convolution sums of a divisor function for prime levels
    Cho, Bumkyu
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2020, 16 (03) : 537 - 546
  • [4] The circle method and shifted convolution sums involving the divisor function
    Hu, Guangwei
    Lao, Huixue
    [J]. JOURNAL OF NUMBER THEORY, 2024, 262 : 1 - 27
  • [5] Sums of the higher divisor function of diagonal homogeneous forms
    Zhou, Guang-Liang
    Ding, Yuchen
    [J]. RAMANUJAN JOURNAL, 2022, 59 (03): : 933 - 945
  • [6] Sums of the higher divisor function of diagonal homogeneous forms
    Guang-Liang Zhou
    Yuchen Ding
    [J]. The Ramanujan Journal, 2022, 59 : 933 - 945
  • [7] Evaluating binomial convolution sums of divisor functions in terms of Euler and Bernoulli polynomials
    Cho, Bumkyu
    Park, Ho
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2018, 14 (02) : 509 - 525
  • [8] SUMS OF DIVISOR FUNCTION
    GORDON, B
    ROGERS, K
    [J]. CANADIAN JOURNAL OF MATHEMATICS, 1964, 16 (01): : 151 - &
  • [9] The multinomial convolution sums of certain divisor functions
    Cho, Bumkyu
    Kim, Daeyeoul
    Park, Ho
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 448 (02) : 1163 - 1174
  • [10] CONVOLUTION SUMS ARISING FROM DIVISOR FUNCTIONS
    Kim, Aeran
    Kim, Daeyeoul
    Yan, Li
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 50 (02) : 331 - 360