Water cluster in hydrophobic crystalline porous covalent organic frameworks

被引:42
|
作者
Tan, Ke Tian [1 ]
Tao, Shanshan [1 ]
Huang, Ning [1 ]
Jiang, Donglin [1 ]
机构
[1] Natl Univ Singapore, Fac Sci, Dept Chem, 3,Sci Dr 3, Singapore 117543, Singapore
关键词
ADSORPTION; SILICA;
D O I
10.1038/s41467-021-27128-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Progress over the past decades in water confinement has generated a variety of polymers and porous materials. However, most studies are based on a preconception that small hydrophobic pores eventually repulse water molecules, which precludes the exploration of hydrophobic microporous materials for water confinement. Here, we demonstrate water confinement across hydrophobic microporous channels in crystalline covalent organic frameworks. The frameworks are designed to constitute dense, aligned and one-dimensional polygonal channels that are open and accessible to water molecules. The hydrophobic microporous frameworks achieve full occupation of pores by water via synergistic nucleation and capillary condensation and deliver quick water exchange at low pressures. Water confinement experiments with large-pore frameworks pinpoint thresholds of pore size where confinement becomes dominated by high uptake pressure and large exchange hysteresis. Our results reveal a platform based on microporous hydrophobic covalent organic frameworks for water confinement. Research on water confinement in small hydrophobic pores remains scarce because of a preconception that small hydrophobic pores repulse water molecules. Here, the authors demonstrate water confinement across hydrophobic microporous channels in crystalline covalent organic frameworks.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Water cluster in hydrophobic crystalline porous covalent organic frameworks
    Ke Tian Tan
    Shanshan Tao
    Ning Huang
    Donglin Jiang
    [J]. Nature Communications, 12
  • [2] Porous, crystalline, covalent organic frameworks
    Côté, AP
    Benin, AI
    Ockwig, NW
    O'Keeffe, M
    Matzger, AJ
    Yaghi, OM
    [J]. SCIENCE, 2005, 310 (5751) : 1166 - 1170
  • [3] Crystalline, Porous Helicene Covalent Organic Frameworks
    Yan, Qianqian
    Tao, Shanshan
    Liu, Ruoyang
    Zhi, Yongfeng
    Jiang, Donglin
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (03)
  • [4] Proton conduction in crystalline and porous covalent organic frameworks
    Xu H.
    Tao S.
    Jiang D.
    [J]. Nature Materials, 2016, 15 (7) : 722 - 726
  • [5] Hybrid Porous Crystalline Materials from Metal Organic Frameworks and Covalent Organic Frameworks
    Chen, Ziman
    Li, Xinle
    Yang, Chongqing
    Cheng, Kaipeng
    Tan, Tianwei
    Lv, Yongqin
    Liu, Yi
    [J]. ADVANCED SCIENCE, 2021, 8 (20)
  • [6] Light-Gating Crystalline Porous Covalent Organic Frameworks
    Wang, Guangtong
    Feng, Yu
    Ye, Xingyao
    Li, Zhongping
    Tao, Shanshan
    Jiang, Donglin
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146 (15) : 10953 - 10962
  • [7] Ketazine-Linked Crystalline Porous Covalent Organic Frameworks
    Mu, Xinyu
    Xie, Shuailei
    Ye, Xingyao
    Tao, Shanshan
    Li, Juan
    Jiang, Donglin
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146 (36) : 25118 - 25124
  • [8] Porous Crystalline Olefin-Linked Covalent Organic Frameworks
    Lyu, Hao
    Diercks, Christian S.
    Zhu, Chenhui
    Yaghi, Omar M.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (17) : 6848 - 6852
  • [9] Facile transformation of imine covalent organic frameworks into ultrastable crystalline porous aromatic frameworks
    Li, Xinle
    Zhang, Changlin
    Cai, Songliang
    Lei, Xiaohe
    Altoe, Virginia
    Hong, Fang
    Urban, Jeffrey J.
    Ciston, Jim
    Chan, Emory M.
    Liu, Yi
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [10] Facile transformation of imine covalent organic frameworks into ultrastable crystalline porous aromatic frameworks
    Xinle Li
    Changlin Zhang
    Songliang Cai
    Xiaohe Lei
    Virginia Altoe
    Fang Hong
    Jeffrey J. Urban
    Jim Ciston
    Emory M. Chan
    Yi Liu
    [J]. Nature Communications, 9