A Pipeline for High-Throughput Concentration Response Modeling of Gene Expression for Toxicogenomics

被引:53
|
作者
House, John S. [1 ,2 ]
Grimm, Fabian A. [3 ]
Jima, Dereje D. [1 ,2 ]
Zhou, Yi-Hui [1 ,4 ]
Rusyn, Ivan [3 ]
Wright, Fred A. [1 ,4 ,5 ]
机构
[1] North Carolina State Univ, Bioinformat Res Ctr, Raleigh, NC 27695 USA
[2] North Carolina State Univ, Ctr Human Hlth & Environm, Raleigh, NC 27695 USA
[3] Texas A&M Univ, Dept Vet Integrat Biosci, College Stn, TX USA
[4] North Carolina State Univ, Dept Biol Sci, Raleigh, NC 27695 USA
[5] North Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA
关键词
expression-based dose-response modeling; dose-response modeling; bioinformatics-pipeline; toxicogenomics; bioinformatics & computational biology; iPSCs; cardiomyocytes; expression profiling; DEPARTURE; CHEMICALS; POINTS;
D O I
10.3389/fgene.2017.00168
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Cell-based assays are an attractive option to measure gene expression response to exposure, but the cost of whole-transcriptome RNA sequencing has been a barrier to the use of gene expression profiling for in vitro toxicity screening. In addition, standard RNA sequencing adds variability due to variable transcript length and amplification. Targeted probe-sequencing technologies such as TempO-Seq, with transcriptomic representation that can vary from hundreds of genes to the entire transcriptome, may reduce some components of variation. Analyses of high-throughput toxicogenomics data require renewed attention to read-calling algorithms and simplified dose-response modeling for datasets with relatively few samples. Using data from induced pluripotent stem cell-derived cardiomyocytes treated with chemicals at varying concentrations, we describe here and make available a pipeline for handling expression data generated by TempO-Seq to align reads, clean and normalize raw count data, identify differentially expressed genes, and calculate transcriptomic concentration-response points of departure. The methods are extensible to other forms of concentration-response gene-expression data, and we discuss the utility of the methods for assessing variation in susceptibility and the diseased cellular state.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Pipeline for High-Throughput Modeling of Marijuana and Hemp Extracts
    Chen, Zewei
    Harrington, Peter de Boves
    ANALYTICAL CHEMISTRY, 2019, 91 (22) : 14489 - 14497
  • [2] Embedding the ESRF into the High-Throughput Gene-to-Structure Pipeline
    McCarthy, Joanne
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2007, 63 : S115 - S115
  • [3] High-Throughput Gene-Expression Profiling
    Dyer, Randy
    Glazer, Celeste
    GENETIC ENGINEERING & BIOTECHNOLOGY NEWS, 2011, 31 (13): : 38 - 39
  • [4] High-throughput imaging of brain gene expression
    Brown, VM
    Ossadtchi, A
    Khan, AH
    Cherry, SR
    Leahy, RM
    Smith, DJ
    GENOME RESEARCH, 2002, 12 (02) : 244 - 254
  • [5] High-throughput gene expression profiling of host intestinal immune response to Eimeria
    Lillehoj, H
    Min, WG
    FASEB JOURNAL, 2004, 18 (05): : A817 - A817
  • [6] AlphaPulldown2-a general pipeline for high-throughput structural modeling
    Molodenskiy, Dmitry
    Maurer, Valentin J.
    Yu, Dingquan
    Chojnowski, Grzegorz
    Bienert, Stefan
    Tauriello, Gerardo
    Gilep, Konstantin
    Schwede, Torsten
    Kosinski, Jan
    BIOINFORMATICS, 2025, 41 (03)
  • [7] Pathway analysis and mode-of-action prediction based on computational modeling of high-throughput toxicogenomics
    Haider, Saad
    Mansouri, Kamel
    Black, Michael
    McMullen, Patrick
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [8] High-throughput sample handling and data collection at synchrotrons: embedding the ESRF into the high-throughput gene-to-structure pipeline
    Beteva, A.
    Cipriani, F.
    Cusack, S.
    Delageniere, S.
    Gabadinho, J.
    Gordon, E. J.
    Guijarro, M.
    Hall, D. R.
    Larsen, S.
    Launer, L.
    Lavault, C. B.
    Leonard, G. A.
    Mairs, T.
    McCarthy, A.
    McCarthy, J.
    Meyer, J.
    Mitchell, E.
    Monaco, S.
    Nurizzo, D.
    Pernot, P.
    Pieritz, R.
    Ravelli, R. G. B.
    Rey, V.
    Shepard, W.
    Spruce, D.
    Stuart, D. I.
    Svensson, O.
    Theveneau, P.
    Thibault, X.
    Turkenburg, J.
    Walsh, M.
    McSweeney, S. M.
    ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2006, 62 : 1162 - 1169
  • [9] A high-throughput pipeline for validation of antibodies
    Sikorski, Krzysztof
    Mehta, Adi
    Inngjerdingen, Marit
    Thakor, Flourina
    Kling, Simon
    Kalina, Tomas
    Nyman, Tuula A.
    Stensland, Maria Ekman
    Zhou, Wei
    de Souza, Gustavo A.
    Holden, Lars
    Stuchly, Jan
    Templin, Markus
    Lund-Johansen, Fridtjof
    NATURE METHODS, 2018, 15 (11) : 909 - +
  • [10] iTree: a high-throughput phylogenomic pipeline
    Moustafa, Ahmed
    Bhattacharya, Debashish
    Allen, Andrew E.
    2010 5TH CAIRO INTERNATIONAL BIOMEDICAL ENGINEERING CONFERENCE (CIBEC 2010), 2010, : 103 - 107