Data-Driven Asthma Endotypes Defined from Blood Biomarker and Gene Expression Data

被引:21
|
作者
George, Barbara Jane [1 ]
Reif, David M. [2 ]
Gallagher, Jane E. [3 ]
Williams-DeVane, ClarLynda R. [4 ]
Heidenfelder, Brooke L. [3 ]
Hudgens, Edward E. [3 ]
Jones, Wendell [5 ]
Neas, Lucas [3 ]
Hubal, Elaine A. Cohen [6 ]
Edwards, Stephen W. [4 ]
机构
[1] US EPA, Natl Hlth & Environm Effects Res Lab, Res Triangle Pk, NC 27711 USA
[2] US EPA, Natl Ctr Computat Toxicol, Res Triangle Pk, NC 27711 USA
[3] US EPA, Natl Hlth & Environm Effects Res Lab, Environm Publ Hlth Div, Res Triangle Pk, NC 27711 USA
[4] US EPA, Natl Hlth & Environm Effects Res Lab, Integrated Syst Toxicol Div, Res Triangle Pk, NC 27711 USA
[5] Quintiles Co, Dept Bioinformat, Express Anal, Durham, NC USA
[6] US EPA, Off Res & Dev, Res Triangle Pk, NC 27711 USA
来源
PLOS ONE | 2015年 / 10卷 / 02期
关键词
EXHALED NITRIC-OXIDE; OBESE INDIVIDUALS; PHENOTYPES; ASSOCIATION; IDENTIFICATION; ADIPONECTIN; CHILDREN; DISEASE;
D O I
10.1371/journal.pone.0117445
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The diagnosis and treatment of childhood asthma is complicated by its mechanistically distinct subtypes (endotypes) driven by genetic susceptibility and modulating environmental factors. Clinical biomarkers and blood gene expression were collected from a stratified, cross-sectional study of asthmatic and non-asthmatic children from Detroit, MI. This study describes four distinct asthma endotypes identified via a purely data-driven method. Our method was specifically designed to integrate blood gene expression and clinical biomarkers in a way that provides new mechanistic insights regarding the different asthma endotypes. For example, we describe metabolic syndrome-induced systemic inflammation as an associated factor in three of the four asthma endotypes. Context provided by the clinical biomarker data was essential in interpreting gene expression patterns and identifying putative endotypes, which emphasizes the importance of integrated approaches when studying complex disease etiologies. These synthesized patterns of gene expression and clinical markers from our research may lead to development of novel serum-based biomarker panels.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] A BIOMARKER APPROACH TO DATA-DRIVEN IDENTIFICATION OF ENDOTYPES IN KNEE OA PATIENTS
    Lisowska-Petersen, Z.
    Hannani, M. Toft
    Karsdal, M.
    Bager, C.
    Bay-Jensen, A. C.
    Thudium, C.
    ANNALS OF THE RHEUMATIC DISEASES, 2023, 82 : 1026 - 1026
  • [2] Data-driven model links BMIz to gene expression in pediatric asthma
    Dandenault, Vincent
    Hachem, Nehme
    Adcock, Ian M.
    Andersson, Lars I.
    Auffray, Charles
    Chung, Fan K.
    Dahlen, Sven-Erik
    De Meulder, Bertrand
    Djukanovic, Ratko
    Howarth, Peter
    Knowles, Richard G.
    Krug, Norbert
    Roberts, Amanda
    Sousa, Ana R.
    Sterk, Peter J.
    Supple, David
    Rao, Navin
    Roberts, Graham
    Uddin, Mohib
    Wagers, Scott
    Maitland-Van der Zee, Anke-Hilse
    Longo, Cristina
    EUROPEAN RESPIRATORY JOURNAL, 2023, 62
  • [3] From Biomarkers to Endotypes: Data-driven Identification of Knee Osteoarthritis Patients Subtypes
    Hannani, Monica
    Lisowska-Petersen, Zofia
    Karsdal, Morten
    Bager, Cecilie
    Bay-Jensen, Anne-Christine
    Thudium, Christian
    ARTHRITIS & RHEUMATOLOGY, 2023, 75 : 1646 - 1647
  • [4] A data-driven clustering method for time course gene expression data
    Ma, P
    Castillo-Davis, CI
    Zhong, WX
    Liu, JS
    NUCLEIC ACIDS RESEARCH, 2006, 34 (04) : 1261 - 1269
  • [5] GReNaDIne: A Data-Driven Python']Python Library to Infer Gene Regulatory Networks from Gene Expression Data
    Schmitt, Pauline
    Sorin, Baptiste
    Froute, Timothee
    Parisot, Nicolas
    Calevro, Federica
    Peignier, Sergio
    GENES, 2023, 14 (02)
  • [6] Partitioning gene expression data by data-driven Markov chain Monte Carlo
    Saraiva, E. F.
    Suzuki, A. K.
    Louzada, F.
    Milan, L. A.
    JOURNAL OF APPLIED STATISTICS, 2016, 43 (06) : 1155 - 1173
  • [7] A data-driven method to learn a jump diffusion process from aggregate biological gene expression data
    Gao, Jia-Xing
    Wang, Zhen-Yi
    Zhang, Michael Q.
    Qian, Min-Ping
    Jiang, Da-Quan
    JOURNAL OF THEORETICAL BIOLOGY, 2022, 532
  • [8] Integrated Theory- and Data-driven Feature Selection in Gene Expression Data Analysis
    Raghu, Vineet K.
    Ge, Xiaoyu
    Chrysanthis, Panos K.
    Benos, Panayiotis V.
    2017 IEEE 33RD INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2017), 2017, : 1525 - 1532
  • [9] Data-driven method for identifying the expression of the Lyapunov exponent from random data
    Chen, Xi
    Jin, Xiaoling
    Huang, Zhilong
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2023, 148
  • [10] Towards Data-driven Software-Defined Infrastructures
    Garcia Lopez, Pedro
    Gracia Tinedo, Raul
    Montresor, Alberto
    2ND INTERNATIONAL CONFERENCE ON CLOUD FORWARD: FROM DISTRIBUTED TO COMPLETE COMPUTING, 2016, 97 : 144 - 147