Structural Characterization of Full-Length Human Dehydrodolichyl Diphosphate Synthase Using an Integrative Computational and Experimental Approach

被引:7
|
作者
Bar-El, Michal Lisnyansky [1 ]
Lee, Su Youn [2 ]
Ki, Ah Young [2 ]
Kapelushnik, Noa [3 ]
Loewenstein, Anat [4 ]
Chung, Ka Young [2 ]
Schneidman-Duhovny, Dina [5 ,6 ]
Giladi, Moshe [1 ,7 ]
Newman, Hadas [4 ]
Haitin, Yoni [1 ]
机构
[1] Tel Aviv Univ, Sackler Fac Med, Dept Physiol & Pharmacol, IL-6997801 Tel Aviv, Israel
[2] Sungkyunkwan Univ, Sch Pharm, Suwon 16419, South Korea
[3] Sheba Med Ctr, Dept Ophthalmol, IL-5265601 Ramat Gan, Israel
[4] Tel Aviv Sourasky Med Ctr, Dept Ophthalmol, IL-6423906 Tel Aviv, Israel
[5] Hebrew Univ Jerusalem, Inst Life Sci, Dept Biol Chem, IL-9190401 Jerusalem, Israel
[6] Hebrew Univ Jerusalem, Sch Comp Sci & Engn, IL-9190401 Jerusalem, Israel
[7] Tel Aviv Sourasky Med Ctr, IL-6423906 Tel Aviv, Israel
基金
以色列科学基金会;
关键词
cis-prenyltransferase; computational modeling; hydrogen-deuterium exchange mass-spectrometry; small-angle X-ray scattering; enzyme kinetics; DHDDS; UNDECAPRENYL PYROPHOSPHATE SYNTHASE; NOGO-B RECEPTOR; BIOLOGICAL MACROMOLECULES; LIGHT-SCATTERING; GLYCOSYLATION; PRINCIPLES;
D O I
10.3390/biom9110660
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Dehydrodolichyl diphosphate synthase (DHDDS) is the catalytic subunit of the heteromeric human cis-prenyltransferase complex, synthesizing the glycosyl carrier precursor for N-linked protein glycosylation. Consistent with the important role of N-glycosylation in protein biogenesis, DHDDS mutations result in human diseases. Importantly, DHDDS encompasses a C-terminal region, which does not converge with any known conserved domains. Therefore, despite the clinical importance of DHDDS, our understating of its structure-function relations remains poor. Here, we provide a structural model for the full-length human DHDDS using a multidisciplinary experimental and computational approach. Size-exclusion chromatography multi-angle light scattering revealed that DHDDS forms a monodisperse homodimer in solution. Enzyme kinetics assays revealed that it exhibits catalytic activity, although reduced compared to that reported for the intact heteromeric complex. Our model suggests that the DHDDS C-terminus forms a helix-turn-helix motif, tightly packed against the core catalytic domain. This model is consistent with small-angle X-ray scattering data, indicating that the full-length DHDDS maintains a similar conformation in solution. Moreover, hydrogen-deuterium exchange mass-spectrometry experiments show time-dependent deuterium uptake in the C-terminal domain, consistent with its overall folded state. Finally, we provide a model for the DHDDS-NgBR heterodimer, offering a structural framework for future structural and functional studies of the complex.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] A combined computational and structural model of the full-length human prolactin receptor
    Katrine Bugge
    Elena Papaleo
    Gitte W. Haxholm
    Jonathan T. S. Hopper
    Carol V. Robinson
    Johan G. Olsen
    Kresten Lindorff-Larsen
    Birthe B. Kragelund
    [J]. Nature Communications, 7
  • [2] A combined computational and structural model of the full-length human prolactin receptor
    Bugge, Katrine
    Papaleo, Elena
    Haxholm, Gitte W.
    Hopper, Jonathan T. S.
    Robinson, Carol V.
    Olsen, Johan G.
    Lindorff-Larsen, Kresten
    Kragelund, Birthe B.
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [3] Structural determination of a full-length plant cellulose synthase informed by experimental and in silico methods
    Kwansa, Albert L.
    Singh, Abhishek
    Williams, Justin T.
    Haigler, Candace H.
    Roberts, Alison W.
    Yingling, Yaroslava G.
    [J]. CELLULOSE, 2024, 31 (03) : 1429 - 1447
  • [4] Structural determination of a full-length plant cellulose synthase informed by experimental and in silico methods
    Albert L. Kwansa
    Abhishek Singh
    Justin T. Williams
    Candace H. Haigler
    Alison W. Roberts
    Yaroslava G. Yingling
    [J]. Cellulose, 2024, 31 : 1429 - 1447
  • [5] An integrative structural study of the human full-length RAD52 at 2.2 Å resolution
    Balboni, Beatrice
    Marotta, Roberto
    Rinaldi, Francesco
    Milordini, Giulia
    Varignani, Giulia
    Girotto, Stefania
    Cavalli, Andrea
    [J]. COMMUNICATIONS BIOLOGY, 2024, 7 (01)
  • [6] Full-Length Characterization of Proteins in Human Populations
    Borges, Chad R.
    Rehder, Doug S.
    Jarvis, Jason W.
    Schaab, Mathew R.
    Oran, Paul E.
    Nelson, Randall W.
    [J]. CLINICAL CHEMISTRY, 2010, 56 (02) : 202 - 211
  • [7] Purification and biochemical characterization of full-length human tyrosinase
    Kus, Nicole Joanne
    Dolinska, Monika B.
    Sergeev, Yuri V.
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2016, 57 (12)
  • [8] Structural analysis of the full-length human LRRK2
    Myasnikov, Alexander
    Zhu, Hanwen
    Hixson, Patricia
    Xie, Boer
    Yu, Kaiwen
    Pitre, Aaron
    Peng, Junmin
    Sun, Ji
    [J]. CELL, 2021, 184 (13) : 3519 - +
  • [9] Structural Modeling of Full-Length KCa Channels using Rosetta
    Shim, Heesung
    Wulff, Heike
    DeMarco, Kevin
    Yarov-yarovoy, Vladimir
    [J]. BIOPHYSICAL JOURNAL, 2018, 114 (03) : 307A - 307A
  • [10] Structural characterization of full-length NSF and 20S particles
    Chang, Lei-Fu
    Chen, Song
    Liu, Cui-Cui
    Pan, Xijiang
    Jiang, Jiansen
    Bai, Xiao-Chen
    Xie, Xin
    Wang, Hong-Wei
    Sui, Sen-Fang
    [J]. NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2012, 19 (03) : 268 - U21