A MAP Approach for 1-Bit Compressive Sensing in Synthetic Aperture Radar Imaging

被引:57
|
作者
Dong, Xiao [1 ,2 ]
Zhang, Yunhua [1 ]
机构
[1] Chinese Acad Sci, Ctr Space Sci & Appl Res, Key Lab Microwave Remote Sensing, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
1-bit compressive sensing (CS); maximum a posteriori (MAP); sparsity; synthetic aperture radar (SAR); SIGNAL RECOVERY; SAR SIGNAL;
D O I
10.1109/LGRS.2015.2390623
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In this letter, we propose a compressive sensing approach for synthetic aperture radar (SAR) imaging of sparse scenes with 1-bit-quantized data. Within the framework of maximum a posteriori estimation, we formulate the SAR image reconstruction problem as a sparse optimization problem and then solve it using a first-order primal-dual algorithm. The processing results of both simulated and real radar data show that our approach can eliminate the ghost target caused by 1-bit quantization in high signal-to-noise ratio situations and suppress the noisy background very well.
引用
收藏
页码:1237 / 1241
页数:5
相关论文
共 50 条
  • [1] A Robust Maximum a Posteriori Algorithm for 1-Bit Synthetic Aperture Radar Imaging
    Wu, Ruirui
    Niu, Mingyu
    Liu, Fangxi
    Liu, Falin
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [2] Bayesian compressive sensing in synthetic aperture radar imaging
    Xu, J.
    Pi, Y.
    Cao, Z.
    [J]. IET RADAR SONAR AND NAVIGATION, 2012, 6 (01): : 2 - 8
  • [3] 1-bit compressive sensing
    Boufounos, Petros T.
    Baraniuk, Richard G.
    [J]. 2008 42ND ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS, VOLS 1-3, 2008, : 16 - 21
  • [4] A 1-Bit Compressive Sensing Approach for SAR Imaging Based on Approximated Observation
    Zhou, Chongbin
    Liu, Falin
    Li, Bo
    Hu, Jingqiu
    Lv, Yuanhao
    [J]. EIGHTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2016), 2016, 10033
  • [5] One-bit compressive sensing with time-varying thresholds in synthetic aperture radar imaging
    Demir, Mehmet
    Ercelebi, Ergun
    [J]. IET RADAR SONAR AND NAVIGATION, 2018, 12 (12): : 1517 - 1526
  • [6] A COMPRESSIVE SENSING APPROACH FOR SYNTHETIC APERTURE IMAGING RADIOMETERS
    Li, Shiyong
    Zhou, Xi
    Ren, Bailing
    Sun, Houjun
    Lv, Xin
    [J]. PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2013, 135 : 583 - 599
  • [7] Bayesian compressive sensing for synthetic-aperture radar tomography imaging
    Ren, Xiaozhen
    Qin, Yao
    Qiao, Lihong
    [J]. UKRAINIAN JOURNAL OF PHYSICAL OPTICS, 2020, 21 (04) : 191 - 200
  • [8] Sparse Aperture Inverse Synthetic Aperture Radar Imaging Based on Gridless Compressive Sensing
    Wu, Weitao
    Li, Zhaolong
    [J]. 2019 INTERNATIONAL APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY SYMPOSIUM - CHINA (ACES), VOL 1, 2019,
  • [9] Compressive Sensing for Ground Based Synthetic Aperture Radar
    Pieraccini, Massimiliano
    Rojhani, Neda
    Miccinesi, Lapo
    [J]. REMOTE SENSING, 2018, 10 (12):
  • [10] Block Compressive Sensing in Synthetic Aperture Radar (SAR)
    Kazemi, Peyman
    Modarres-Hashemi, Mahmood
    Naghsh, Mohammad Mahdi
    [J]. 2016 24TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2016, : 1324 - 1329