Parameter Tuning in an Evolutionary Algorithm for Commodity Transportation Optimization

被引:0
|
作者
Dovgan, Erik [1 ]
Tusar, Tea [1 ]
Filipic, Bogdan [1 ]
机构
[1] Jozef Stefan Inst, Dept Intelligent Syst, Ljubljana 1000, Slovenia
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Tuning parameters of an evolutionary algorithm is the essential phase of a problem solving process since the parameter values significantly influence the algorithm efficiency. A traditional parameter tuning approach finds a setting of parameter values that is then used for solving various problem instances. Clearly, such parameter values may not perform well on specific problem instances. This paper suggests finding several parameter settings which are suitable for specific problem instances. However, this is not aimed at the level of each individual instance, but rather for specific types of problem instances. A new problem instance can then be solved using the tuned parameter values for its type. We demonstrate the approach by tuning parameters of an evolutionary algorithm for commodity transportation optimization with very heterogeneous problem instances. Numerical experiments show that the procedure improves the algorithm performance. Moreover, the analysis of empirical results reveals that there exist relations between the tuned parameter values and that they vary over types of problem instances.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Evolutionary Algorithm Parameter Tuning with Sensitivity Analysis
    Pinel, Frederic
    Danoy, Gregoire
    Bouvry, Pascal
    [J]. SECURITY AND INTELLIGENT INFORMATION SYSTEMS, 2012, 7053 : 204 - 216
  • [2] Logistic regression for parameter tuning on an evolutionary algorithm
    Ramos, ICO
    Goldbarg, MC
    Goldbarg, EG
    Neto, ADD
    [J]. 2005 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-3, PROCEEDINGS, 2005, : 1061 - 1068
  • [3] Bayesian Optimization for Parameter Tuning in Evolutionary Algorithms
    Roman, Ibai
    Ceberio, Josu
    Mendiburu, Alexander
    Lozano, Jose A.
    [J]. 2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 4839 - 4845
  • [4] Evolutionary game algorithm for continuous parameter optimization
    Ye, J
    Liu, XD
    Han, L
    [J]. INFORMATION PROCESSING LETTERS, 2004, 91 (05) : 211 - 219
  • [5] On tuning the design of an evolutionary algorithm for machining optimization problems
    Vigouroux, Jean-Louis
    Foufou, Sebti
    Deshayes, Laurent
    Filliben, James J.
    Welsch, Lawrence A.
    Donmez, A. Alkan
    [J]. ICINCO 2007: PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, VOL ICSO: INTELLIGENT CONTROL SYSTEMS AND OPTIMIZATION, 2007, : 240 - +
  • [6] Parameter Tuning for Bees Algorithm on Continuous Optimization Problems
    Zhang, Xin
    Cheng, Xunyu
    [J]. COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, 2018, 423 : 409 - 417
  • [7] An adaptive parameter tuning of particle swarm optimization algorithm
    Xu, Gang
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (09) : 4560 - 4569
  • [8] Parameter optimization of an evolutionary algorithm for RNA structure discovery
    Fogel, GB
    Weekes, DG
    Sampath, R
    Ecker, DJ
    [J]. CEC2004: PROCEEDINGS OF THE 2004 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2004, : 607 - 613
  • [9] Evolutionary algorithm characterization in real parameter optimization problems
    Caamano, Pilar
    Bellas, Francisco
    Becerra, Jose A.
    Duro, Richard J.
    [J]. APPLIED SOFT COMPUTING, 2013, 13 (04) : 1902 - 1921
  • [10] An Adaptive Parameter Tuning Strategy for Many-objective Evolutionary Algorithm
    Zheng, Wei
    Sun, Jianyong
    Li, Hui
    [J]. 2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2019, : 1718 - 1725