Characterizations of convex and quasiconvex set-valued maps

被引:32
|
作者
Benoist, J [1 ]
Popovici, N
机构
[1] Univ Limoges, Dept Math, LACO, UPRESSA 6090, F-87060 Limoges, France
[2] Univ Babes Bolyai, Fac Math & Comp Sci, R-3400 Cluj Napoca, Romania
关键词
generalized convex set-valued maps; scalarization; polar cones;
D O I
10.1007/s001860200260
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The aim of this paper is to characterize in terms of classical convexity and quasiconvexity of extended real-valued functions those set-valued maps which are K-convex or K-quasiconvex with respect to a convex cone K. In particular, we recover some known characterizations of K-convex and K-quasiconvex vector-valued functions.
引用
收藏
页码:427 / 435
页数:9
相关论文
共 50 条
  • [1] Characterizations of convex and quasiconvex set-valued maps
    Joël Benoist
    Nicolae Popovici
    [J]. Mathematical Methods of Operations Research, 2003, 57 : 427 - 435
  • [2] CHARACTERIZATIONS OF PROPERLY QUASICONVEX SET-VALUED MAPS
    Li, Fei
    Yang, Xinmin
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2017, 18 (03) : 473 - 483
  • [3] A Note on Quasiconvex Set-Valued Maps
    C. S. Lalitha
    Sonia Davar
    [J]. OPSEARCH, 2003, 40 (1) : 52 - 61
  • [4] A NOTE ON EXPLICITLY QUASICONVEX SET-VALUED MAPS
    La Torre, Davide
    Popovici, Nicolae
    Rocca, Matteo
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2011, 12 (01) : 113 - 118
  • [5] Complete Duality for Quasiconvex and Convex Set-Valued Functions
    Drapeau, Samuel
    Hamel, Andreas H.
    Kupper, Michael
    [J]. SET-VALUED AND VARIATIONAL ANALYSIS, 2016, 24 (02) : 253 - 275
  • [6] Complete Duality for Quasiconvex and Convex Set-Valued Functions
    Samuel Drapeau
    Andreas H. Hamel
    Michael Kupper
    [J]. Set-Valued and Variational Analysis, 2016, 24 : 253 - 275
  • [7] Strongly convex set-valued maps
    Hugo Leiva
    Nelson Merentes
    Kazimierz Nikodem
    José Luis Sánchez
    [J]. Journal of Global Optimization, 2013, 57 : 695 - 705
  • [8] Strongly convex set-valued maps
    Leiva, Hugo
    Merentes, Nelson
    Nikodem, Kazimierz
    Luis Sanchez, Jose
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2013, 57 (03) : 695 - 705
  • [9] Generalized convex set-valued maps
    Benoist, J
    Popovici, N
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 288 (01) : 161 - 166
  • [10] CHARACTERIZATIONS OF PREINVEX AND PREQUASIINVEX SET-VALUED MAPS
    Jabarootian, T.
    Zafarani, J.
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2009, 13 (03): : 871 - 898