Identification of Hidden Markov Models Using Spectral Learning with Likelihood Maximization

被引:0
|
作者
Mattila, Robert [1 ]
Rojas, Cristian R. [1 ]
Krishnamurthy, Vikram [2 ,3 ]
Wahlberg, Bo [1 ]
机构
[1] KTH Royal Inst Technol, Sch Elect Engn, Dept Automat Control, Stockholm, Sweden
[2] Cornell Univ, Dept Elect & Comp Engn, Ithaca, NY 14853 USA
[3] Cornell Univ, Cornell Tech, Ithaca, NY 14853 USA
基金
瑞典研究理事会;
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we consider identifying a hidden Markov model (HMM) with the purpose of computing estimates of joint and conditional (posterior) probabilities over observation sequences. The classical maximum likelihood estimation algorithm (via the Baum-Welch/expectation-maximization algorithm), has recently been challenged by methods of moments. Such methods employ low-order moments to provide parameter estimates and have several benefits, including consistency and low computational cost. This paper aims to reduce the gap in statistical efficiency that results from restricting to only low-order moments in the training data. In particular, we propose a two-step procedure that combines spectral learning with a single Newton-like iteration for maximum likelihood estimation. We demonstrate an improved statistical performance using the proposed algorithm in numerical simulations.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Evaluation of Spectral Learning for the Identification of Hidden Markov Models
    Mattila, Robert
    Rojas, Cristian R.
    Wahlberg, Bo
    IFAC PAPERSONLINE, 2015, 48 (28): : 897 - 902
  • [3] Spectral Learning of Mixture of Hidden Markov Models
    Subakan, Y. Cem
    Traa, Johannes
    Smaragdis, Paris
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [4] Spectral Learning of Mixtures of Hidden Markov Models
    Suebakan, Yusuf Cem
    Celiktutan, Oya
    Cemgil, Ali Taylan
    Sankur, Buelent
    2013 21ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2013,
  • [5] A spectral algorithm for learning Hidden Markov Models
    Hsu, Daniel
    Kakade, Sham M.
    Zhang, Tong
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2012, 78 (05) : 1460 - 1480
  • [6] Nonparametric identification and maximum likelihood estimation for hidden Markov models
    Alexandrovich, G.
    Holzmann, H.
    Leister, A.
    BIOMETRIKA, 2016, 103 (02) : 423 - 434
  • [7] Speaker identification using hidden Markov models
    Inman, M
    Danforth, D
    Hangai, S
    Sato, K
    ICSP '98: 1998 FOURTH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, PROCEEDINGS, VOLS I AND II, 1998, : 609 - 612
  • [8] Fast Likelihood Search for Hidden Markov Models
    Fujiwara, Yasuhiro
    Sakurai, Yasushi
    Kitsuregawa, Masaru
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2009, 3 (04)
  • [9] HMMatch: Peptide identification by spectral matching of tandem mass spectra using hidden Markov models
    Wu, Xue
    Tseng, Chau-Wen
    Edwards, Nathan
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2007, 14 (08) : 1025 - 1043
  • [10] DISCRIMINATIVE SPECTRAL LEARNING OF HIDDEN MARKOV MODELS FOR HUMAN ACTIVITY RECOGNITION
    Nazabal, Alfredo
    Artes-Rodriguez, Antonio
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 1966 - 1970