An Algebraic Characterization of Fuzzy Cellular Automata

被引:0
|
作者
El Yacoubi, Samira [1 ]
Mingarelli, Angelo B.
机构
[1] LAMPS Univ Perpignan 66860, Perpignan, France
关键词
fuzzy systems; elementary cellular automata; characterisation; EVOLUTION;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
It is well known that, in the case of a one dimensional two-neighbor situation, there are 256 fuzzy cellular automata obtained by the fuzzi-fication of the disjunctive normal form in classical (Wolfram) boolean cellular automata using classical aristotelian logic. Starting from a single polynomial in three variables we find its invariants under affine linear transformations and show that among these there are precisely eight equivalent polynomials whose span over Z(2) generates a vector space of dimension 8 over the field Z(2) containing 256 distinct elements. Its elements are, in fact, the transition (local) rules of the fuzzy cellular automata studied by previous authors. Our result allows for an alternate characterization of such fuzzy cellular automata and permits their generalization to arbitrary number of variables over general (finite or infinite) fields thus bypassing the need for a disjunctive normal form approach.
引用
收藏
页码:195 / 206
页数:12
相关论文
共 50 条
  • [1] On algebraic cellular automata
    Ceccherini-Silberstein, Tullio
    Coornaert, Michel
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2011, 84 : 541 - 558
  • [2] ALGEBRAIC PROPERTIES OF CELLULAR AUTOMATA
    MARTIN, O
    ODLYZKO, AM
    WOLFRAM, S
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 93 (02) : 219 - 258
  • [3] Algebraic fuzzy automata theory
    Malik, DS
    Mordeson, JN
    [J]. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2000, 25 (2C): : 23 - 52
  • [4] On algebraic study of fuzzy automata
    Tiwari, S. P.
    Yadav, Vijay K.
    Singh, Anupam K.
    [J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2015, 6 (03) : 479 - 485
  • [5] On algebraic study of fuzzy automata
    S. P. Tiwari
    Vijay K. Yadav
    Anupam K. Singh
    [J]. International Journal of Machine Learning and Cybernetics, 2015, 6 : 479 - 485
  • [6] Topological Approaches in Characterization of Algebraic Structure of Fuzzy Multiset Finite Automata
    Ruhela, Shainky
    Verma, Sunny
    Yadav, Vijay Kumar
    Tiwari, S. P.
    [J]. NEW MATHEMATICS AND NATURAL COMPUTATION, 2024,
  • [7] CELLULAR AUTOMATA OVER ALGEBRAIC STRUCTURES
    Castillo-Ramirez, Alonso
    Mata-Gutierrez, O.
    Zaldivar-Corichi, Angel
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2022, 64 (02) : 306 - 319
  • [8] ALGEBRAIC PROPERTIES OF LINEAR CELLULAR AUTOMATA
    LEBRUYN, L
    VANDENBERGH, M
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1991, 157 : 217 - 234
  • [9] THE ALGEBRAIC PROPERTIES OF FINITE CELLULAR AUTOMATA
    GUNJI, Y
    [J]. PHYSICA D, 1990, 41 (02): : 282 - 294
  • [10] On Characterization of Attractor Basins of Fuzzy Multiple Attractor Cellular Automata
    Maji, Pradipta
    [J]. FUNDAMENTA INFORMATICAE, 2008, 86 (1-2) : 143 - 168