A 4096-neuron 1M-synapse 3.8pJ/SOP Spiking Neural Network with On-chip STDP Learning and Sparse Weights in 10nm FinFET CMOS

被引:0
|
作者
Chen, Gregory K. [1 ]
Kumar, Raghavan [1 ]
Sumbul, H. Ekin [1 ]
Knag, Phil C. [1 ]
Krishnamurthy, Ram K. [1 ]
机构
[1] Intel Corp, Circuits Res Lab, Hillsboro, OR 97124 USA
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A 4096-neuron, 1M-synapse SNN in 10nm FinFET CMOS achieves a peak throughput of 25.2GSOP/s at 0.9V, peak energy efficiency of 3.8pJ/SOP at 525mV, and 2.3 mu W/neuron operation at 450mV. The SNN skips zero-valued activations for up to 9.4x lower energy. Fine-grained sparse weights reduce memory by up to 16x. On-chip STDP trains RBMs to de-noise MNIST digits and to reconstruct natural scene images with RMSE of 0.036. A 50% sparse weight MLP classifies MNIST digits with 97.9% accuracy at 1.7 mu J/classification.
引用
收藏
页码:255 / 256
页数:2
相关论文
共 2 条
  • [1] A 4096-Neuron 1M-Synapse 3.8-pJ/SOP Spiking Neural Network With On-Chip STDP Learning and Sparse Weights in 10-nm FinFET CMOS
    Chen, Gregory K.
    Kumar, Raghavan
    Sumbul, H. Ekin
    Knag, Phil C.
    Krishnamurthy, Ram K.
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2019, 54 (04) : 992 - 1002
  • [2] A 3.43TOPS/W 48.9pJ/Pixel 50.1nJ/Classification 512 Analog Neuron Sparse Coding Neural Network with On-Chip Learning and Classification in 40nm CMOS
    Buhler, Fred N.
    Brown, Peter
    Li, Jiabo
    Chen, Thomas
    Zhang, Zhengya
    Flynn, Michael P.
    [J]. 2017 SYMPOSIUM ON VLSI CIRCUITS, 2017, : C30 - C31