Plasma electrolytic oxidation of AZ31 magnesium alloy in aluminate-tungstate electrolytes and the coating formation mechanism

被引:60
|
作者
Tu, Wenbin [1 ]
Cheng, Yulin [1 ]
Wang, Xinyao [1 ]
Zhan, Tingyan [1 ]
Han, Junxiang [1 ]
Cheng, Yingliang [1 ]
机构
[1] Hunan Univ, Coll Mat Sci & Engn, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Plasma electrolytic oxidation; Magnesium alloy; Tungstate; Aluminate; Formation mechanism; CU-LI ALLOY; SILICATE-HEXAMETAPHOSPHATE ELECTROLYTE; MICROARC OXIDATION; CORROSION-RESISTANCE; MG ALLOY; PEO COATINGS; CERAMIC COATINGS; THERMAL-DECOMPOSITION; SODIUM TUNGSTATE; GROWTH-MECHANISM;
D O I
10.1016/j.jallcom.2017.07.117
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Plasma electrolytic oxidation (PEO) of AZ31 magnesium alloy under pulsed bipolar regimes has been carried out in an aluminate electrolyte with the addition of 0-25 g l(-1) Na2WO4 center dot 2H(2)O. Black coatings are formed with the addition of tungstate. Sequential anodizing has also been adopted to investigate the coating formation mechanisms by tracing the elemental distribution of W and Al in the coatings. The coatings develop an outer layer, inner layer and a barrier layer after a certain period of PEO. At the later stage of the PEO, the coating grows inwardly, which was accompanied by the strong penetrating discharges. The penetrating discharges have caused significant anion deposition, and the electrolyte species, such as W and Al, can be transported to the coating/substrate interface instantly. The anodic current density within the penetrating discharge channels is estimated to be similar to 10(4) A cm(-2), which is high enough to melt the coating materials beneath the pancake structure and cause the direct thermal decomposition of water and hence the anomalous gas evolution reported for PEO. X-ray photoelectron spectroscopy (XPS) denies that free state W exists in PEO coatings. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:199 / 216
页数:18
相关论文
共 50 条
  • [1] Effect of frequency on black coating formation on AZ31 magnesium alloy by plasma electrolytic oxidation in aluminate-tungstate electrolyte
    Tu, Wenbin
    Zhu, Zhunda
    Zhuang, Xiujuan
    Cheng, Yingliang
    Skeldon, Peter
    SURFACE & COATINGS TECHNOLOGY, 2019, 372 : 34 - 44
  • [2] Formation of a Spinel Coating on AZ31 Magnesium Alloy by Plasma Electrolytic Oxidation
    Maximilian Sieber
    Frank Simchen
    Ingolf Scharf
    Thomas Lampke
    Journal of Materials Engineering and Performance, 2016, 25 : 1157 - 1162
  • [3] Formation of a Spinel Coating on AZ31 Magnesium Alloy by Plasma Electrolytic Oxidation
    Sieber, Maximilian
    Simchen, Frank
    Scharf, Ingolf
    Lampke, Thomas
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2016, 25 (03) : 1157 - 1162
  • [4] Corrosion of Magnesium Alloy AZ31 Coated by Plasma Electrolytic Oxidation
    O. O. Kalinichenko
    V. O. Holovenko
    K. V. Roienko
    D. O. Misnyankin
    O. B. Girin
    L. O. Snizhko
    Surface Engineering and Applied Electrochemistry, 2019, 55 : 595 - 601
  • [5] Corrosion of Magnesium Alloy AZ31 Coated by Plasma Electrolytic Oxidation
    Kalinichenko, O. O.
    Holovenko, V. O.
    Roienko, K. V.
    Misnyankin, D. O.
    Girin, O. B.
    Snizhko, L. O.
    SURFACE ENGINEERING AND APPLIED ELECTROCHEMISTRY, 2019, 55 (05) : 595 - 601
  • [6] Corrosion Characteristics of Plasma Electrolytic Oxidation Treated AZ31 Magnesium Alloy with an Increase of the Coating Thickness
    Choi, Boeun
    Chung, Wonsub
    Kim, Yonghwan
    KOREAN JOURNAL OF METALS AND MATERIALS, 2020, 58 (02): : 87 - 96
  • [7] Assessment of duplex coating combining plasma electrolytic oxidation and polymer layer on AZ31 magnesium alloy
    Arrabal, R.
    Mota, J. M.
    Criado, A.
    Pardo, A.
    Mohedano, M.
    Matykina, E.
    SURFACE & COATINGS TECHNOLOGY, 2012, 206 (22): : 4692 - 4703
  • [8] Corrosion degradation of AZ31 magnesium alloy coated by plasma electrolytic oxidation
    Kajanek, Daniel
    Hadzima, Branislav
    Buhagiar, Joseph
    Wasserbauer, Jaromir
    Jackova, Martina
    13TH INTERNATIONAL SCIENTIFIC CONFERENCE ON SUSTAINABLE, MODERN AND SAFE TRANSPORT (TRANSCOM 2019), 2019, 40 : 51 - 58
  • [9] Plasma electrolytic oxidation of AZ31 magnesium alloy diffusion bonded with aluminium
    Sajan, Melwin
    Sampatirao, Hariprasad
    Balasubramanian, Ravisankar
    Nagumothu, Rameshbabu
    MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 972 - 976
  • [10] Plasma electrolytic oxidation of AZ31 and AZ91 magnesium alloys:Comparison of coatings formation mechanism
    A.G.Rakoch
    E.P.Monakhova
    Z.V.Khabibullina
    M.Serdechnova
    C.Blawert
    M.L.Zheludkevich
    A.A.Gladkova
    Journal of Magnesium and Alloys, 2020, 8 (03) : 587 - 600