Exponential Growth Model and Stochastic Population Models: A Comparison via Goat Population Data

被引:0
|
作者
Radzi, Nurul Ashikin Mohamad [1 ]
Abd Rahman, Haliza [1 ]
Jamaludin, Shariffah Suhaila Syed [1 ]
Bahar, Arifah [2 ]
机构
[1] Univ Teknol Malaysia, Fac Sci, Dept Math Sci, Johor Baharu 81310, Malaysia
[2] UTM Ctr Ind & Appl Math UTM CIAM, Johor Baharu 81310, Malaysia
关键词
Population dynamics; exponential model; discrete-time Markov chain; continuous-time Markov chain; stochastic differential equation;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A population dynamic model explains the changes of a population in the near future, given its current status and the environmental conditions that the population is exposed to. In modelling a population dynamic, deterministic model and stochastic models are used to describe and predict the observed population. For modelling population size, deterministic model may provide sufficient biological understanding about the system, but if the population numbers become small, then a stochastic model is necessary with certain conditions. In this study, both types of models such as exponential, discrete-time Markov chain (DTMC), continuous-time Markov chain (CTMC) and stochastic differential equation (SDE) are applied to goat population data of small size. Results from the simulations of stochastic realizations as well as deterministic counterparts are shown and tested by root mean square error (RMSE). The SDE model gives the smallest RMSE value which indicate the best model in fitting the data.
引用
收藏
页码:60 / 69
页数:10
相关论文
共 50 条
  • [1] Interpolation solution in generalized stochastic exponential population growth model
    Khodabin, M.
    Maleknejad, K.
    Rostami, M.
    Nouri, M.
    [J]. APPLIED MATHEMATICAL MODELLING, 2012, 36 (03) : 1023 - 1033
  • [2] A Stochastic Super-Exponential Growth Model for Population Dynamics
    Avila, P.
    Rekker, A.
    [J]. APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES, 2010, 1301 : 196 - 204
  • [3] A quantitative comparison of stochastic mortality models on Italian population data
    Carfora, M. F.
    Cutillo, L.
    Orlando, A.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 112 : 198 - 214
  • [4] STOCHASTIC MODELS FOR POPULATION GROWTH OF SEXES
    GOODMAN, LA
    [J]. BIOMETRIKA, 1968, 55 (03) : 469 - &
  • [5] Population and replicate variability in an exponential growth model
    Kleczkowski, A
    [J]. ACTA PHYSICA POLONICA B, 2005, 36 (05): : 1623 - 1634
  • [6] Note on asynchronous exponential growth for structured population models
    Farkas, Jozsef Z.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (02) : 618 - 622
  • [7] Stochastic models in population biology: from dynamic noise to Bayesian description and model comparison for given data sets
    Mateus, Luis
    Stollenwerk, Nico
    Zambrini, Jean-Claude
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2013, 90 (10) : 2161 - 2173
  • [8] Asynchronous Exponential Growth of a General Structured Population Model
    Jacek Banasiak
    Katarzyna Pichór
    Ryszard Rudnicki
    [J]. Acta Applicandae Mathematicae, 2012, 119 : 149 - 166
  • [9] Asynchronous Exponential Growth of a General Structured Population Model
    Banasiak, Jacek
    Pichor, Katarzyna
    Rudnicki, Ryszard
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2012, 119 (01) : 149 - 166
  • [10] A STOCHASTIC MODEL FOR VIRUS GROWTH IN A CELL POPULATION
    Bjornberg, J. E.
    Britton, T.
    Broman, E. I.
    Natan, E.
    [J]. JOURNAL OF APPLIED PROBABILITY, 2014, 51 (03) : 599 - 612