Representations of the Kauffman bracket skein algebra II: Punctured surfaces

被引:12
|
作者
Bonahon, Francis [1 ]
Wong, Helen
机构
[1] Univ Southern Calif, Dept Math, Los Angeles, CA 90007 USA
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2017年 / 17卷 / 06期
基金
美国国家科学基金会;
关键词
QUANTUM TEICHMULLER SPACE; MODULE; INVARIANTS; QUANTIZATION; OBSERVABLES; VARIETIES; SL2(C);
D O I
10.2140/agt.2017.17.3399
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In part I, we constructed invariants of irreducible finite-dimensional representations of the Kauffman bracket skein algebra of a surface. We introduce here an inverse construction, which to a set of possible invariants associates an irreducible representation that realizes these invariants. The current article is restricted to surfaces with at least one puncture, a condition that is lifted in subsequent work relying on this one. A step in the proof is of independent interest, and describes the arithmetic structure of the Thurston intersection form on the space of integer weight systems for a train track.
引用
收藏
页码:3399 / 3434
页数:36
相关论文
共 50 条