Robust Visual Tracking Via Part-Based Template Matching with Low-Rank Regulation

被引:0
|
作者
Teng, Fei [1 ]
Liu, Qing [1 ]
Mei, Langqi [2 ]
Lu, Pingping [2 ]
机构
[1] Wuhan Univ Technol, Sch Energy & Power Engn, Wuhan 430070, Peoples R China
[2] Wuhan Univ Technol, Sch Automat, Wuhan 430070, Peoples R China
关键词
Visual tracking; Part-based model; Random projections; Low-rank regulation; MULTISCALE SHIP TRACKING;
D O I
10.1007/978-3-662-48365-7_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a simple yet effective visual tracking method to attack the challenge when the target object undergoes partial or even full occlusion. First, a fixed number of image patches are sampled as the template set around current object location. In the detection stage, candidate image patches are sampled as the candidate set around the object location in the previous frame. Second, both the template set and candidate set patches are divided into sub-regions and features can be efficiently extracted via random projections. The confidence score for a specific candidate patch is computed through compressive features' low-rank regulation with the template set patches. The lowest confidence score in the current frame indicates the new object location. The encouraging experimental results show that our proposed method outperforms several state-of-the-art algorithms, especially when the target object suffers partial or even full occlusion.
引用
收藏
页码:55 / 62
页数:8
相关论文
共 50 条
  • [1] Robust visual tracking via part-based model
    Wang, Yong
    Luo, Xinbin
    Ding, Lu
    Fu, Shan
    Zhang, Huanlong
    [J]. MULTIMEDIA SYSTEMS, 2020, 26 (05) : 607 - 620
  • [2] Robust visual tracking via part-based model
    Yong Wang
    Xinbin Luo
    Lu Ding
    Shan Fu
    Huanlong Zhang
    [J]. Multimedia Systems, 2020, 26 : 607 - 620
  • [3] ROBUST VISUAL TRACKING VIA PART-BASED SPARSITY MODEL
    Dai, Pingyang
    Luo, Yanlong
    Liu, Weisheng
    Li, Cuihua
    Xie, Yi
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 1803 - 1806
  • [4] Robust Visual Tracking Via Consistent Low-Rank Sparse Learning
    Tianzhu Zhang
    Si Liu
    Narendra Ahuja
    Ming-Hsuan Yang
    Bernard Ghanem
    [J]. International Journal of Computer Vision, 2015, 111 : 171 - 190
  • [5] Robust Visual Tracking Via Online Low-rank Sparse Representation
    Kong, Fanqiang
    Wang, Dandan
    Shen, Qiu
    Bian, Chending
    Yan, Xiaole
    [J]. Gongcheng Kexue Yu Jishu/Advanced Engineering Sciences, 2017, 49 (04): : 151 - 157
  • [6] Robust visual tracking via incremental low-rank features learning
    Zhang, Changcheng
    Liu, Risheng
    Qiu, Tianshuang
    Su, Zhixun
    [J]. NEUROCOMPUTING, 2014, 131 : 237 - 247
  • [7] ROBUST VISUAL TRACKING VIA GUIDED LOW-RANK SUBSPACE LEARNING
    Wang, Di
    Liu, Risheng
    Su, Zhixun
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015,
  • [8] Robust Visual Tracking Via Consistent Low-Rank Sparse Learning
    Zhang, Tianzhu
    Liu, Si
    Ahuja, Narendra
    Yang, Ming-Hsuan
    Ghanem, Bernard
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2015, 111 (02) : 171 - 190
  • [9] Robust part-based visual tracking via adaptive collaborative modelling
    Kong, Jun
    Wang, Benxuan
    Jiang, Min
    [J]. IET IMAGE PROCESSING, 2019, 13 (10) : 1648 - 1657
  • [10] Low-Rank Sparse Learning for Robust Visual Tracking
    Zhang, Tianzhu
    Ghanem, Bernard
    Liu, Si
    Ahuja, Narendra
    [J]. COMPUTER VISION - ECCV 2012, PT VI, 2012, 7577 : 470 - 484