Recurrence relations for semilocal convergence of a fifth-order method in Banach spaces

被引:8
|
作者
Zheng, Lin [1 ]
Gu, Chuanqing [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
关键词
Nonlinear equations in Banach spaces; Recurrence relations; Semilocal convergence; Newton-super-Halley method; RATIONAL CUBIC METHODS; NEWTON-LIKE METHOD;
D O I
10.1007/s11075-011-9508-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the semilocal convergence for a fifth-order method for solving nonlinear equations in Banach spaces. The semilocal convergence of this method is established by using recurrence relations. We prove an existence-uniqueness theorem and give a priori error bounds which demonstrates the R-order of the method. As compared with the Jarratt method in Hernandez and Salanova (Southwest J Pure Appl Math 1:29-40, 1999) and the Multi-super-Halley method in Wang et al. (Numer Algorithms 56:497-516, 2011), the differentiability conditions of the convergence of the method in this paper are mild and the R-order is improved. Finally, we give some numerical applications to demonstrate our approach.
引用
收藏
页码:623 / 638
页数:16
相关论文
共 50 条
  • [1] Recurrence relations for semilocal convergence of a fifth-order method in Banach spaces
    Lin Zheng
    Chuanqing Gu
    Numerical Algorithms, 2012, 59 : 623 - 638
  • [2] Semilocal convergence by using recurrence relations for a fifth-order method in Banach spaces
    Cordero, A.
    Hernandez-Veron, M. A.
    Romero, N.
    Torregrosa, J. R.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 273 : 205 - 213
  • [3] Semilocal Convergence for a Fifth-Order Newton's Method Using Recurrence Relations in Banach Spaces
    Chen, Liang
    Gu, Chuanqing
    Ma, Yanfang
    JOURNAL OF APPLIED MATHEMATICS, 2011,
  • [4] Semilocal Convergence Of Sixth Order Method By Using Recurrence Relations In Banach Spaces
    Madhu, Kalyanasundaram
    APPLIED MATHEMATICS E-NOTES, 2018, 18 : 197 - 208
  • [5] ON THE CONVERGENCE OF A FIFTH-ORDER ITERATIVE METHOD IN BANACH SPACES
    Gagandeep
    Sharma, Rajni
    Argyros, I. K.
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 13 (01): : 16 - 40
  • [6] On the local convergence of a fifth-order iterative method in Banach spaces
    Cordero, A.
    Ezquerro, J. A.
    Hernandez-Veron, M. A.
    Torregrosa, J. R.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 251 : 396 - 403
  • [7] Recurrence relations for semilocal convergence of a Newton-like method in Banach spaces
    Parida, P. K.
    Gupta, D. K.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) : 350 - 361
  • [8] Semilocal Convergence Analysis of an Iteration of Order Five Using Recurrence Relations in Banach Spaces
    Sukhjit Singh
    D. K. Gupta
    E. Martínez
    José L. Hueso
    Mediterranean Journal of Mathematics, 2016, 13 : 4219 - 4235
  • [9] Semilocal Convergence Analysis of an Iteration of Order Five Using Recurrence Relations in Banach Spaces
    Singh, Sukhjit
    Gupta, D. K.
    Martinez, E.
    Hueso, Jose L.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (06) : 4219 - 4235
  • [10] Newton-Kantorovich type theorem by using recurrence relations for a fifth-order method in Banach spaces
    Chen, Liang
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2014, 17 (03) : 486 - 497