Above-ground biomass estimation and yield prediction in potato by using UAV-based RGB and hyperspectral imaging

被引:251
|
作者
Li, Bo [1 ,2 ,3 ]
Xu, Xiangming [2 ]
Zhang, Li [2 ]
Han, Jiwan [3 ]
Bian, Chunsong [1 ]
Li, Guangcun [1 ]
Liu, Jiangang [1 ]
Jin, Liping [1 ]
机构
[1] CAAS, Inst Vegetables & Flowers, 12 Zhongguancun, Beijing 100081, Peoples R China
[2] NIAB EMR, New Rd, East Mailing ME19 6BJ, Kent, England
[3] Shanxi Agr Univ, Taigu 030801, Shanxi, Peoples R China
基金
英国生物技术与生命科学研究理事会;
关键词
Unmanned aerial vehicle; Hyperspectral imaging; Potato; Above-ground biomass; Yield prediction; VEGETATION INDEXES; WINTER-WHEAT; CANOPY REFLECTANCE; LEAF CHLOROPHYLL; SPECTRAL INDEXES; NITROGEN STATUS; LOW-ALTITUDE; GRAIN-YIELD; CORN YIELD; MODEL;
D O I
10.1016/j.isprsjprs.2020.02.013
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Rapid and accurate biomass and yield estimation facilitates efficient plant phenotyping and site-specific crop management. A low altitude unmanned aerial vehicle (UAV) was used to acquire RGB and hyperspectral imaging data for a potato crop canopy at two growth stages to estimate the above-ground biomass and predict crop yield. Field experiments included six cultivars and multiple treatments of nitrogen, potassium, and mixed compound fertilisers. Crop height was estimated using the difference between digital surface model and digital elevation models derived from RGB imagery. Combining with two narrow-band vegetation indices selected by the RReliefF feature selection algorithm. Random Forest regression models demonstrated high prediction accuracy for both fresh and dry above-ground biomass, with a coefficient of determination (r(2)) > 0.90. Crop yield was predicted using four narrowband vegetation indices and crop height (r(2) = 0.63) with imagery data obtained 90 days after planting. A Partial Least Squares regression model based on the full wavelength spectra demonstrated improved yield prediction (r(2 )= 0.81). This study demonstrated the merits of UAV-based RGB and hyperspectral imaging for estimating the above-ground biomass and yield of potato crops, which can be used to assist in site-specific crop management.
引用
收藏
页码:161 / 172
页数:12
相关论文
共 50 条
  • [1] Estimation of Potato Above-Ground Biomass Using UAV-Based Hyperspectral images and Machine-Learning Regression
    Liu, Yang
    Feng, Haikuan
    Yue, Jibo
    Fan, Yiguang
    Jin, Xiuliang
    Zhao, Yu
    Song, Xiaoyu
    Long, Huiling
    Yang, Guijun
    REMOTE SENSING, 2022, 14 (21)
  • [2] Above-ground Biomass Wheat Estimation: Deep Learning with UAV-based RGB Images
    Schreiber, Lincoln Vinicius
    Atkinson Amorim, Joao Gustavo
    Guimaraes, Leticia
    Matos, Debora Motta
    da Costa, Celso Maciel
    Parraga, Adriane
    APPLIED ARTIFICIAL INTELLIGENCE, 2022, 36 (01)
  • [3] Estimation of Potato Plant Height and Above-ground Biomass Based on UAV Hyperspectral Images
    Liu Y.
    Feng H.
    Huang J.
    Sun Q.
    Yang F.
    Yang G.
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2021, 52 (02): : 188 - 198
  • [4] Forage Height and Above-Ground Biomass Estimation by Comparing UAV-Based Multispectral and RGB Imagery
    Wang, Hongquan
    Singh, Keshav D.
    Poudel, Hari P.
    Natarajan, Manoj
    Ravichandran, Prabahar
    Eisenreich, Brandon
    SENSORS, 2024, 24 (17)
  • [5] Estimation of Potato Above-Ground Biomass Based on Hyperspectral Characteristic Parameters of UAV and Plant Height
    Liu Yang
    Feng Hai-kuan
    Huang Jue
    Yang Fu-qin
    Wu Zhi-chao
    Sun Qian
    Yang Gui-jun
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41 (03) : 903 - 911
  • [6] Above-ground biomass estimation of arable crops using UAV-based SfM photogrammetry
    Gil-Docampo, M. L.
    Arza-Garcia, M.
    Ortiz-Sanz, J.
    Martinez-Rodriguez, S.
    Marcos-Robles, J. L.
    Sanchez-Sastre, L. F.
    GEOCARTO INTERNATIONAL, 2020, 35 (07) : 687 - 699
  • [7] Estimating Above-Ground Biomass of Maize Using Features Derived from UAV-Based RGB Imagery
    Niu, Yaxiao
    Zhang, Liyuan
    Zhang, Huihui
    Han, Wenting
    Peng, Xingshuo
    REMOTE SENSING, 2019, 11 (11)
  • [8] Estimation of Potato Above Ground Biomass Based on Hyperspectral Images of UAV
    Liu Yang
    Zhang Han
    Feng Hai-kuan
    Sun Qian
    Huang Jue
    Wang Jiao-jiao
    Yang Gui-jun
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41 (09) : 2657 - 2664
  • [9] Estimation of Above-Ground Biomass of Potato Based on Wavelet Analysis
    Liu Yang
    Sun Qian
    Feng Hai-kuan
    Yang Fu-qin
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41 (04) : 1205 - 1212
  • [10] Onion biomass monitoring using UAV-based RGB imaging
    Rocio Ballesteros
    Jose Fernando Ortega
    David Hernandez
    Miguel Angel Moreno
    Precision Agriculture, 2018, 19 : 840 - 857