Solving Stochastic Dynamic Programming Problems: A Mixed Complementarity Approach

被引:2
|
作者
Chang, Wonjun [1 ]
Ferris, Michael C. [4 ,5 ]
Kim, Youngdae [2 ]
Rutherford, Thomas F. [3 ,5 ]
机构
[1] CRA Int, Washington, DC 20004 USA
[2] Argonne Natl Lab, Math & Comp Sci Div, Lemont, IL USA
[3] Univ Wisconsin, Dept Agr & Appl Econ, Madison, WI USA
[4] Univ Wisconsin, Dept Comp Sci, 1210 W Dayton St, Madison, WI 53706 USA
[5] Wisconsin Inst Discovery, Optimizat Grp, Madison, WI USA
关键词
Dynamic Programming; Computable general equilibrium; Complementarity; Computational methods; EQUILIBRIUM; MODELS; GAMS;
D O I
10.1007/s10614-019-09921-y
中图分类号
F [经济];
学科分类号
02 ;
摘要
We present a mixed complementarity problem (MCP) formulation of continuous state dynamic programming problems (DP-MCP). We write the solution to projection methods in value function iteration (VFI) as a joint set of optimality conditions that characterize maximization of the Bellman equation; and approximation of the value function. The MCP approach replaces the iterative component of projection based VFI with a one-shot solution to a square system of complementary conditions. We provide three numerical examples to illustrate our approach.
引用
收藏
页码:925 / 955
页数:31
相关论文
共 50 条
  • [1] Solving Stochastic Dynamic Programming Problems: A Mixed Complementarity Approach
    Wonjun Chang
    Michael C. Ferris
    Youngdae Kim
    Thomas F. Rutherford
    [J]. Computational Economics, 2020, 55 : 925 - 955
  • [2] Solving dynamic portfolio problems using stochastic programming
    Consigli, G
    Dempster, MAH
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1997, 77 : S535 - S536
  • [3] NeuroGenetic Approach for Solving Dynamic Programming Problems
    Pires, Matheus Giovanni
    da Silva, Ivan Nunes
    Bertoni, Fabiana Cristina
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), VOLS 1-6, 2008, : 2143 - +
  • [4] Neurogenetic Approach for Solving Dynamic Programming Problems
    Pires, Matheus Giovanni
    da Silva, Ivan Nunes
    [J]. ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, PT II, 2010, 6114 : 72 - +
  • [5] A new approach to solving stochastic programming problems with recourse
    Barreiros, A.
    Cardoso, J. Barradas
    [J]. ENGINEERING OPTIMIZATION, 2008, 40 (05) : 475 - 488
  • [6] EVALUATING MIXED INTEGER PROGRAMMING MODELS FOR SOLVING STOCHASTIC INVENTORY PROBLEMS
    Bluemink, Bas
    de Kok, A. G.
    Srinivasan, Balan
    Uzsoy, Reha
    [J]. 2019 WINTER SIMULATION CONFERENCE (WSC), 2019, : 1696 - 1707
  • [7] A Fuzzy Goal Programming Approach for Solving Multiobjective Fuzzy Stochastic Programming Problems
    Pal, Bijay Baran
    Sen, Shyamal
    Kumar, Mousumi
    [J]. 2009 INTERNATIONAL CONFERENCE ON INDUSTRIAL AND INFORMATION SYSTEMS, 2009, : 239 - +
  • [8] On solving Linear Complementarity Problems by DC programming and DCA
    Hoai An Le Thi
    Tao Pham Dinh
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2011, 50 (03) : 507 - 524
  • [9] On solving Linear Complementarity Problems by DC programming and DCA
    Hoai An Le Thi
    Tao Pham Dinh
    [J]. Computational Optimization and Applications, 2011, 50 : 507 - 524
  • [10] METHOD OF SOLVING STOCHASTIC PROGRAMMING PROBLEMS
    ZENKOV, VV
    TSODIKOV, YM
    [J]. ENGINEERING CYBERNETICS, 1973, 11 (03): : 369 - 371