Exploring DFT plus U parameter space with a Bayesian calibration assisted by Markov chain Monte Carlo sampling

被引:10
|
作者
Tavadze, Pedram [1 ]
Boucher, Reese [1 ]
Avendano-Franco, Guillermo [1 ]
Kocan, Keenan X. [2 ]
Singh, Sobhit [3 ]
Dovale-Farelo, Viviana [1 ]
Ibarra-Hernandez, Wilfredo [4 ]
Johnson, Matthew B. [1 ]
Mebane, David S. [2 ]
Romero, Aldo H. [1 ]
机构
[1] West Virginia Univ, Dept Phys & Astron, Morgantown, WV 26506 USA
[2] West Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA
[3] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ USA
[4] Benemerita Univ Autonoma Puebla, Fac Ingn, Apdo Postal J-39, Puebla 72570, Mexico
基金
美国国家科学基金会;
关键词
GENERALIZED GRADIENT APPROXIMATION; DENSITY-FUNCTIONAL THEORY; MEAN-FIELD THEORY; ELECTRONIC-STRUCTURE CALCULATIONS; TOTAL-ENERGY CALCULATIONS; PHOTOELECTRON-SPECTROSCOPY; CORRELATED MATERIALS; MAGNETIC-PROPERTIES; CRYSTAL-STRUCTURE; LDA+U METHOD;
D O I
10.1038/s41524-021-00651-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The density-functional theory is widely used to predict the physical properties of materials. However, it usually fails for strongly correlated materials. A popular solution is to use the Hubbard correction to treat strongly correlated electronic states. Unfortunately, the values of the Hubbard U and J parameters are initially unknown, and they can vary from one material to another. In this semi-empirical study, we explore the U and J parameter space of a group of iron-based compounds to simultaneously improve the prediction of physical properties (volume, magnetic moment, and bandgap). We used a Bayesian calibration assisted by Markov chain Monte Carlo sampling for three different exchange-correlation functionals (LDA, PBE, and PBEsol). We found that LDA requires the largest U correction. PBE has the smallest standard deviation and its U and J parameters are the most transferable to other iron-based compounds. Lastly, PBE predicts lattice parameters reasonably well without the Hubbard correction.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Exploring DFT+U parameter space with a Bayesian calibration assisted by Markov chain Monte Carlo sampling
    Pedram Tavadze
    Reese Boucher
    Guillermo Avendaño-Franco
    Keenan X. Kocan
    Sobhit Singh
    Viviana Dovale-Farelo
    Wilfredo Ibarra-Hernández
    Matthew B. Johnson
    David S. Mebane
    Aldo H. Romero
    npj Computational Materials, 7
  • [2] Bayesian penalized empirical likelihood and Markov Chain Monte Carlo sampling
    Chang, Jinyuan
    Tang, Cheng Yong
    Zhu, Yuanzheng
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2025,
  • [3] Bayesian Genome Assembly and Assessment by Markov Chain Monte Carlo Sampling
    Howison, Mark
    Zapata, Felipe
    Edwards, Erika J.
    Dunn, Casey W.
    PLOS ONE, 2014, 9 (06):
  • [4] Feature selection by Markov chain Monte Carlo sampling - A Bayesian approach
    Egmont-Petersen, M
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, PROCEEDINGS, 2004, 3138 : 1034 - 1042
  • [5] Automated Parameter Blocking for Efficient Markov Chain Monte Carlo Sampling
    Turek, Daniel
    de Valpine, Perry
    Paciorek, Christopher J.
    Anderson-Bergman, Clifford
    BAYESIAN ANALYSIS, 2017, 12 (02): : 465 - 490
  • [6] Iterative importance sampling with Markov chain Monte Carlo sampling in robust Bayesian analysis
    Cruz, Ivette Raices
    Lindstroem, Johan
    Troffaes, Matthias C. M.
    Sahlin, Ullrika
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 176
  • [7] BAYESIAN CALIBRATION OF A CERVICAL CANCER MODEL USING MARKOV CHAIN MONTE CARLO
    Walsh, C.
    Ortendahl, J.
    Sy, S.
    Kim, J.
    VALUE IN HEALTH, 2011, 14 (07) : A470 - A470
  • [8] Ensemble Bayesian model averaging using Markov Chain Monte Carlo sampling
    Jasper A. Vrugt
    Cees G. H. Diks
    Martyn P. Clark
    Environmental Fluid Mechanics, 2008, 8 : 579 - 595
  • [9] Ensemble Bayesian model averaging using Markov Chain Monte Carlo sampling
    Vrugt, Jasper A.
    Diks, Cees G. H.
    Clark, Martyn P.
    ENVIRONMENTAL FLUID MECHANICS, 2008, 8 (5-6) : 579 - 595
  • [10] ASYMPTOTICALLY INDEPENDENT MARKOV SAMPLING: A NEW MARKOV CHAIN MONTE CARLO SCHEME FOR BAYESIAN INFERENCE
    Beck, James L.
    Zuev, Konstantin M.
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2013, 3 (05) : 445 - 474