Seam Carving Detection Using Convolutional Neural Networks

被引:0
|
作者
da Silva Cieslak, Luiz Fernando [1 ]
Pontara da Costa, Kelton Augusto [1 ]
Papa, Joao Paulo [1 ]
机构
[1] Sao Paulo State Univ, UNESP, BR-17033360 Bauru, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Deep Learning; Convolutional Neural Networks; Seam Carving; Computer Forensics;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep Learning techniques have been widely used in the recent years, primarily because of their efficiency in several applications, such as engineering, medicine, and data security. Seam carving is a content-aware image resizing method that can also be used for image tampering, being not straightforward to be identified. In this paper, we combine Convolutional Neural Networks and Local Binary Patterns to recognize whether an image has been modified automatically or not by seam carving. The experimental results show that the proposed approach can achieve accuracies within the range [81% - 98%] depending on the severity of the tampering procedure.
引用
收藏
页码:195 / 199
页数:5
相关论文
共 50 条
  • [1] A convolutional neural network based on noise residual for seam carving detection
    Zhang, Dengyong
    Lv, Zhenyu
    Li, Feng
    Ding, Xiangling
    Yang, Gaobo
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2024, 100
  • [2] An End-to-End Approach for Seam Carving Detection Using Deep Neural Networks
    Moreira, Thierry P.
    Santana, Marcos Cleison S.
    Passos, Leandro A.
    Papa, Joao Paulo
    da Costa, Kelton Augusto P.
    PATTERN RECOGNITION AND IMAGE ANALYSIS (IBPRIA 2022), 2022, 13256 : 447 - 457
  • [3] A Convolutional Neural Network Based Seam Carving Detection Scheme for Uncompressed Digital Images
    Ye, Jingyu
    Shi, Yuxi
    Xu, Guanshuo
    Shi, Yun-Qing
    DIGITAL FORENSICS AND WATERMARKING, IWDW 2018, 2019, 11378 : 3 - 13
  • [4] Deep Convolutional Neural Network for Identifying Seam-Carving Forgery
    Nam, Seung-Hun
    Ahn, Wonhyuk
    Yu, In-Jae
    Kwon, Myung-Joon
    Son, Minseok
    Lee, Heung-Kyu
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (08) : 3308 - 3326
  • [5] Weld Seam Defect Detection Based on Deformable Convolutional Neural Networks
    Chen, Yan
    Tang, Hongyan
    Zhou, Chaoyang
    Xiong, Gang
    Tang, Honglin
    IEICE ELECTRONICS EXPRESS, 2024, 21 (24):
  • [6] Detection of Image Seam Carving Using a Novel Pattern
    Lu, Ming
    Niu, Shaozhang
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2019, 2019
  • [7] Detection of Arrhythmia Using Convolutional Neural Networks
    Greeshma, Burla
    Sireesha, Moturi
    Rao, S. N. Thirumala
    PROCEEDINGS OF SECOND INTERNATIONAL CONFERENCE ON SUSTAINABLE EXPERT SYSTEMS (ICSES 2021), 2022, 351 : 21 - 30
  • [8] Supernovae Detection by Using Convolutional Neural Networks
    Cabrera-Vives, Guillermo
    Reyes, Ignacio
    Forster, Francisco
    Estevez, Pablo A.
    Maureira, Juan-Carlos
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 251 - 258
  • [9] Wheeze Detection Using Convolutional Neural Networks
    Kochetov, Kirill
    Putin, Evgeny
    Azizov, Svyatoslav
    Skorobogatov, Ilya
    Filchenkov, Andrey
    PROGRESS IN ARTIFICIAL INTELLIGENCE (EPIA 2017), 2017, 10423 : 162 - 173
  • [10] Object Detection Using Convolutional Neural Networks
    Galvez, Reagan L.
    Bandala, Argel A.
    Dadios, Elmer P.
    Vicerra, Ryan Rhay P.
    Maningo, Jose Martin Z.
    PROCEEDINGS OF TENCON 2018 - 2018 IEEE REGION 10 CONFERENCE, 2018, : 2023 - 2027