Generalized geometrically convex functions and inequalities

被引:4
|
作者
Noor, Muhammad Aslam [1 ,2 ]
Noor, Khalida Inayat [2 ]
Safdar, Farhat [2 ]
机构
[1] King Saud Univ, Dept Math, Riyadh, Saudi Arabia
[2] COMSATS Inst Informat Technol, Dept Math, Pk Rd, Islamabad, Pakistan
关键词
generalized convex functions; generalized geometrically convex functions; Hermite-Hadamard's type inequalities; Holder's inequality;
D O I
10.1186/s13660-017-1477-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce and study a new class of generalized functions, called generalized geometrically convex functions. We establish several basic inequalities related to generalized geometrically convex functions. We also derive several new inequalities of the Hermite-Hadamard type for generalized geometrically convex functions. Several special cases are discussed, which can be deduced from our main results.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Generalized geometrically convex functions and inequalities
    Muhammad Aslam Noor
    Khalida Inayat Noor
    Farhat Safdar
    [J]. Journal of Inequalities and Applications, 2017
  • [2] INTEGRAL INEQUALITIES VIA GENERALIZED GEOMETRICALLY r-CONVEX FUNCTIONS
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    Safdar, Farhat
    [J]. INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2018, 16 (06): : 868 - 881
  • [3] Generalized Inequalities for Convex Functions
    Pavic, Z.
    [J]. JOURNAL OF MATHEMATICAL EXTENSION, 2016, 10 (03) : 77 - 87
  • [4] New Integral Inequalities for Product of Geometrically Convex Functions
    Akdemir, Ahmet Ocak
    Dutta, Hemen
    [J]. 4TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL MATHEMATICS AND ENGINEERING SCIENCES (CMES-2019), 2020, 1111 : 315 - 323
  • [5] GENERALIZED INTEGRAL INEQUALITIES FOR CONVEX FUNCTIONS
    Ozdemir, M. Emin
    Ekinci, Alper
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2016, 19 (04): : 1429 - 1439
  • [6] Certain Analogous for Generalized Geometrically Convex Functions with Applications
    Ashraf, Rehana
    Suhail, Arshiya
    [J]. PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2020, 52 (09): : 31 - 46
  • [7] Simpson-Type Inequalities for Geometrically Relative Convex Functions
    M. A. Noor
    K. I. Noor
    M. U. Awan
    [J]. Ukrainian Mathematical Journal, 2018, 70 : 1145 - 1154
  • [8] Simpson-Type Inequalities for Geometrically Relative Convex Functions
    Noor, M. A.
    Noor, K. I.
    Awan, M. U.
    [J]. UKRAINIAN MATHEMATICAL JOURNAL, 2018, 70 (07) : 1145 - 1154
  • [9] Hermite-Hadamard-Type Inequalities for the Generalized Geometrically Strongly Modified h-Convex Functions
    Yu, Xishan
    Saleem, Muhammad Shoaib
    Waheed, Shumaila
    Khan, Ilyas
    [J]. JOURNAL OF MATHEMATICS, 2021, 2021
  • [10] Hermite–Hadamard type inequalities for operator geometrically convex functions
    A. Taghavi
    V. Darvish
    H. M. Nazari
    S. S. Dragomir
    [J]. Monatshefte für Mathematik, 2016, 181 : 187 - 203