Classification of Dynamic In-hand Manipulation based on SEMG and Kinect

被引:0
|
作者
Xue, Yaxu [1 ]
Ju, Zhaojie [2 ]
Xiang, Kui [1 ]
Chen, Jing [1 ]
机构
[1] Wuhan Univ Technol, Sch Automat, Wuhan, Hubei, Peoples R China
[2] Univ Portsmouth, Sch Comp, Portsmouth, Hants, England
关键词
in-hand manipulation; SEMG; Kinect; artificial neural network;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a hand motion capture system for recognizing dynamic in-hand manipulation of the subjects based on the famous sensing techniques, then transferring the manipulation skills into different bionic hand applications, such as prosthetic hand, animation hand, human computer interaction. By recoding the ten defined in-hand manipulations demonstrated by different subjects, the hand motion information is captured with hybrid SEMG and Kinect. Through the data preprocessing including motion segmentation and feature extraction, recognizing ten different types of hand motions based on the rich feature information are investigated by using Marquardt-Levenberg algorithm based artificial neural network, and the experimental results show the effectiveness and feasibility of this method.
引用
收藏
页码:348 / 352
页数:5
相关论文
共 50 条
  • [1] Dynamic In-Hand Sliding Manipulation
    Shi, Jian
    Woodruff, J. Zachary
    Umbanhowar, Paul B.
    Lynch, Kevin M.
    IEEE TRANSACTIONS ON ROBOTICS, 2017, 33 (04) : 778 - 795
  • [2] Dynamic In-hand Sliding Manipulation
    Shi, Jian
    Woodruff, J. Zachary
    Lynch, Kevin M.
    2015 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2015, : 870 - 877
  • [3] Conceptualising a modified system for classification of in-hand manipulation
    Pont, Karina
    Wallen, Margaret
    Bundy, Anita
    AUSTRALIAN OCCUPATIONAL THERAPY JOURNAL, 2009, 56 (01) : 2 - 15
  • [4] Benchmarking In-Hand Manipulation
    Cruciani, Silvia
    Sundaralingam, Balakumar
    Hang, Kaiyu
    Kumar, Vikash
    Hermans, Tucker
    Kragic, Danica
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (02) : 588 - 595
  • [5] Learning dexterous in-hand manipulation
    Andrychowicz, Marcin
    Baker, Bowen
    Chociej, Maciek
    Jozefowicz, Rafal
    McGrew, Bob
    Pachocki, Jakub
    Petron, Arthur
    Plappert, Matthias
    Powell, Glenn
    Ray, Alex
    Schneider, Jonas
    Sidor, Szymon
    Tobin, Josh
    Welinder, Peter
    Weng, Lilian
    Zaremba, Wojciech
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2020, 39 (01): : 3 - 20
  • [6] Push Resistance in In-hand Manipulation
    He, Junhu
    Zhang, Jianwei
    2014 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2014), 2014, : 2488 - 2493
  • [7] Planning for in-hand dextrous manipulation
    Cherif, M
    Gupta, KK
    ROBOTICS: THE ALGORITHMIC PERSPECTIVE, 1998, : 103 - 117
  • [8] In-Hand Manipulation with Soft Fingertips
    Sarabandi, Soheil
    Lu, Qiujie
    Chen, Genliang
    Rojas, Nicolas
    2022 IEEE 5TH INTERNATIONAL CONFERENCE ON SOFT ROBOTICS (ROBOSOFT), 2022, : 483 - 489
  • [9] A Dexterous Gripper For In-Hand Manipulation
    Rahman, Nahian
    Carbonari, Luca
    D'Imperio, Mariapaola
    Canali, Carlo
    Caldwell, Darwin G.
    Cannella, Ferdinando
    2016 IEEE INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2016, : 377 - 382
  • [10] Sensorless In-Hand Caging Manipulation
    Maeda, Yusuke
    Asamura, Tomohiro
    INTELLIGENT AUTONOMOUS SYSTEMS 14, 2017, 531 : 255 - 267