Monotone Finite Difference Schemes for Quasilinear Parabolic Problems with Mixed Boundary Conditions

被引:2
|
作者
Jose Gaspar, Francisco [1 ]
Javier Lisbona, Francisco [1 ]
Matus, Piotr P. [2 ,3 ]
Vo Thi Kim Tuyen [4 ]
机构
[1] Univ Zaragoza, Dept Appl Math, Pedro Cerbuna 12, E-50009 Zaragoza, Spain
[2] John Paul II Catholic Univ Lublin, Inst Math & Comp Sci, Al Raclawickie 14, PL-20950 Lublin, Poland
[3] NAS Belarus, Inst Math, 11 Surganov Str, Minsk 20072, BELARUS
[4] Belarusian State Univ, 4 Nezavisimosti Ave, Minsk 220030, BELARUS
关键词
Two-Dimensional Quasilinear Parabolic Equation; Finite Difference Schemes; Monotonicity; Maximum Principle; Convergence; STABILITY;
D O I
10.1515/cmam-2016-0002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider finite difference methods for two-dimensional quasilinear parabolic problems with mixed Dirichlet-Neumann boundary conditions. Some strong two-side estimates for the difference solution are provided and convergence results in the discrete norm are proved. Numerical examples illustrate the good performance of the proposed numerical approach.
引用
收藏
页码:231 / 243
页数:13
相关论文
共 50 条