Phosphoproteomic analysis of basal and therapy-induced adaptive signaling networks in BRAF and NRAS mutant melanoma

被引:13
|
作者
Fedorenko, Inna V. [1 ]
Fang, Bin [2 ]
Munko, Ana Cecelia [1 ]
Gibney, Geoffrey T. [3 ]
Koomen, John M. [1 ]
Smalley, Keiran S. M. [1 ,3 ]
机构
[1] Univ S Florida, Coll Med, H Lee Moffitt Canc Ctr & Res Inst, Dept Mol Oncol, Tampa, FL 33612 USA
[2] Univ S Florida, Coll Med, H Lee Moffitt Canc Ctr & Res Inst, Dept Prote, Tampa, FL 33612 USA
[3] Univ S Florida, Coll Med, H Lee Moffitt Canc Ctr & Res Inst, Dept Cutaneous Oncol, Tampa, FL 33612 USA
基金
美国国家卫生研究院;
关键词
Biomedicine; BRAF; Melanoma; NRAS; Phosphoproteomics; Signaling; INHIBITOR RESISTANCE; MEK INHIBITION; QUANTITATIVE PROTEOMICS; METASTATIC MELANOMA; MEDIATES RESISTANCE; ACQUIRED-RESISTANCE; PKC-DELTA; CELLS; MUTATIONS; CANCER;
D O I
10.1002/pmic.201400200
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Basal and kinase inhibitor driven adaptive signaling has been examined in a panel of melanoma cell lines using phosphoproteomics in conjunction with pathway analysis. A considerable divergence in the spectrum of tyrosine-phosphorylated peptides was noted at the cell line level. The unification of genotype-specific cell line data revealed the enrichment for the tyrosine-phosphorylated cytoskeletal proteins to be associated with the presence of a BRAF mutation and oncogenic NRAS to be associated with increased receptor tyrosine kinase phosphorylation. A number of proteins including cell cycle regulators (cyclin dependent kinase 1, cyclin dependent kinase 2, and cyclin dependent kinase 3), MAPK pathway components (Extracellular signal regulated kinase 1 and Extracellular signal regulated kinase 2), interferon regulators (tyrosine kinase-2), GTPase regulators (Ras-Rasb interactor 1), and controllers of protein tyrosine phosphorylation (dual specificity tyrosine (Y) phosphorylation regulated kinase 1A and protein tyrosine phosphatase receptor type A) were common to all genotypes. Treatment of a BRAF-mutant/phosphatase and tensin homologue (PTEN) null melanoma cell line with vemurafenib led to decreased phosphorylation of ERK, phospholipase C1, and beta-catenin with increases in receptor tyrosine kinase phosphorylation, signal transduction and activator of signaling 3, and glycogen synthase kinase 3 alpha noted. In NRAS-mutant melanoma, MEK inhibition led to increased phosphorylation of epidermal growth factor receptor signaling pathway components, Src family kinases, and protein kinase C delta with decreased phosphorylation seen in STAT3 and ERK1/2. Together these data present the first systems level view of adaptive and basal phosphotyrosine signaling in BRAF- and NRAS-mutant melanoma.
引用
收藏
页码:327 / 339
页数:13
相关论文
共 30 条
  • [1] Kinases and adaptive signaling contribute to drug resistance in BRAF mutant melanoma
    Sharma, Ritin
    Phadke, Manali
    Britton, David
    Pike, Ian
    Smalley, Keiran
    Koomen, John M.
    CANCER RESEARCH, 2015, 75
  • [2] Phosphoproteomic analysis of cell-based resistance to BRAF inhibitor therapy in melanoma
    Parker, Robert
    Vella, Laura J.
    Xavier, Dylan
    Amirkhani, Ardeshir
    Parker, Jimmy
    Cebon, Jonathan
    Molloy, Mark P.
    FRONTIERS IN ONCOLOGY, 2015, 5
  • [3] Identifying signaling networks in melanoma tumors that promote the uncontrolled growth of BRAF mutant melanocytes
    Xiao, H.
    Chen, C.
    Shiu, J.
    Ruiz, R.
    Caldwell, M. G.
    Lander, A. D.
    Ganesan, A. K.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2022, 142 (08) : S14 - S14
  • [4] Efficacy of Targeted Radionuclide Therapy Using [131I]ICF01012 in 3D Pigmented BRAF- and NRAS-Mutant Melanoma Models and In Vivo NRAS-Mutant Melanoma
    Akil, Hussein
    Quintana, Mercedes
    Raymond, Jeremy H.
    Billoux, Tommy
    Benboubker, Valentin
    Besse, Sophie
    Auzeloux, Philippe
    Delmas, Veronique
    Petit, Valerie
    Larue, Lionel
    D'Incan, Michel
    Degoul, Francoise
    Rouanet, Jacques
    CANCERS, 2021, 13 (06) : 1 - 20
  • [5] ERK/MAPK Signaling Drives Overexpression of the Rac-GEF, PREX1, in BRAF- and NRAS-Mutant Melanoma
    Ryan, Meagan B.
    Finn, Alexander J.
    Pedone, Katherine H.
    Thomas, Nancy E.
    Der, Channing J.
    Cox, Adrienne D.
    MOLECULAR CANCER RESEARCH, 2016, 14 (10) : 1009 - 1018
  • [6] Systems Analysis of Adaptive Responses to MAP Kinase Pathway Blockade in BRAF Mutant Melanoma
    Capaldo, Brian J.
    Roller, Devin
    Axelrod, Mark J.
    Koeppel, Alex F.
    Petricoin, Emanuel F.
    Slingluff, Craig L., Jr.
    Weber, Michael J.
    Mackey, Aaron J.
    Gioeli, Daniel
    Bekiranov, Stefan
    PLOS ONE, 2015, 10 (09):
  • [7] LSD1 inhibition attenuates targeted therapy-induced lineage plasticity in BRAF mutant colorectal cancer
    Christopher A. Ladaika
    Averi Chakraborty
    Ashiq Masood
    Galen Hostetter
    Joo Mi Yi
    Heather M. O’Hagan
    Molecular Cancer, 24 (1)
  • [8] TGFβ signaling sensitizes MEKi-resistant human melanoma to targeted therapy-induced apoptosis
    Benjamin Loos
    Adrian Salas-Bastos
    Anna Nordin
    Julien Debbache
    Salome Stierli
    Phil F. Cheng
    Stefanie Rufli
    Conrad Wyss
    Mitchell P. Levesque
    Reinhard Dummer
    Wendy Wei-Lynn Wong
    Steve Pascolo
    Claudio Cantù
    Lukas Sommer
    Cell Death & Disease, 15 (12)
  • [9] BRAF-mutant melanoma management: a single center retrospective analysis of patients treated with sequential therapy
    Proietti, Ilaria
    De Falco, Elena
    Pacini, Luca
    Spagnoli, Alessandra
    Melone, Velia
    Petrozza, Vincenzo
    Di Cristofano, Claudio
    Mangino, Giorgio
    Romeo, Giovanna
    Rosa, Paolo
    Calogero, Antonella
    Potenza, Concetta
    MELANOMA MANAGEMENT, 2024, 11 (01)
  • [10] Objective response to immune checkpoint inhibitor therapy in NRAS-mutant melanoma: A systematic review and meta-analysis
    Jaeger, Zachary J. J.
    Raval, Neel S. S.
    Maverakis, Natalia K. A.
    Chen, David Y. Y.
    Ansstas, George
    Hardi, Angela
    Cornelius, Lynn A. A.
    FRONTIERS IN MEDICINE, 2023, 10