Complexity Reduction for Parametrized Catalytic Reaction Model

被引:0
|
作者
Chaturantabut, Saifon [1 ]
机构
[1] Thammasat Univ, Rangsit Ctr, Fac Sci & Technol, Dept Math & Stat, Pathum Thani 12121, Thailand
关键词
model reduction; differential equations; proper orthogonal decomposition; discrete empirical interpolation; catalytic reactions; PROPER ORTHOGONAL DECOMPOSITION; EMPIRICAL INTERPOLATION; NONLINEAR MODEL; EQUATIONS; POD;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This work presents an application of a nonlinear model reduction approach to decrease the complexity in simulating a steady-state catalytic reactions, which are essential in facilitating many chemical processes. This approach is based on combining the proper orthogonal decomposition (POD) and the discrete empirical interpolation method (DEIM). This work illustrates the applicability of the POD-DEIM approach with the finite volume discretization. POD is used to generate a low dimensional basis set that captures the dominant behaviour of the solutions from the finite volume discretization with various parameter values, and hence provides a substantial reduction in the number of unknowns. Due to the nonlinearity of this problem, this work also applies DEIM to reduce the complexity in computing the POD projected nonlinear term. The numerical experiments demonstrate the accuracy and efficiency of these model reduction approaches through the parametric study of catalytic reactions.
引用
收藏
页码:61 / 65
页数:5
相关论文
共 50 条
  • [1] Model order reduction of parametrized nonlinear reaction-diffusion systems
    Grepl, Martin A.
    COMPUTERS & CHEMICAL ENGINEERING, 2012, 43 : 33 - 44
  • [2] Parametrized model reduction based on semidefinite programming
    Sootla, Aivar
    Sou, Kin Cheong
    Rantzer, Anders
    AUTOMATICA, 2013, 49 (09) : 2840 - 2844
  • [3] Parametrized Complexity of Expansion Height
    Bauer, Ulrich
    Rathod, Abhishek
    Spreer, Jonathan
    27TH ANNUAL EUROPEAN SYMPOSIUM ON ALGORITHMS (ESA 2019), 2019, 144
  • [4] HIERARCHICAL MODEL REDUCTION DRIVEN BY A PROPER ORTHOGONAL DECOMPOSITION FOR PARAMETRIZED ADVECTION-DIFFUSION-REACTION PROBLEMS
    PASINI, M. A. S. S. I. M. I. L. I. A. N. O. L. U. P. O.
    PEROTTO, S. I. M. O. N. A.
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2022, 55 : 187 - 212
  • [5] The Parametrized Complexity of the Segment Number
    Cornelsen, Sabine
    Da Lozzo, Giordano
    Grilli, Luca
    Gupta, Siddharth
    Kratochvil, Jan
    Wolff, Alexander
    GRAPH DRAWING AND NETWORK VISUALIZATION, GD 2023, PT II, 2023, 14466 : 97 - 113
  • [6] Efficient and Certified Model Reduction for Parametrized Dynamical Systems
    Haasdonk, Bernard
    AT-AUTOMATISIERUNGSTECHNIK, 2010, 58 (08) : 468 - 474
  • [7] Equivariant parametrized topological complexity
    Daundkar, Navnath
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2024,
  • [8] The parametrized complexity of knot polynomials
    Makowsky, JA
    Mariño, JP
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2003, 67 (04) : 742 - 756
  • [9] HIERARCHICAL MODEL REDUCTION TECHNIQUES FOR FLOW MODELING IN A PARAMETRIZED SETTING
    Zancanaro, Matteo
    Ballarin, Francesco
    Perotto, Simona
    Rozza, Gianluigi
    MULTISCALE MODELING & SIMULATION, 2021, 19 (01): : 267 - 293
  • [10] DATA-DRIVEN PARAMETRIZED MODEL REDUCTION IN THE LOEWNER FRAMEWORK
    Ionita, A. C.
    Antoulas, A. C.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (03): : A984 - A1007