COMPLETE ISOMETRIES BETWEEN SUBSPACES OF NONCOMMUTATIVE Lp-SPACES
被引:0
|
作者:
De La Salle, Mikael
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 06, Equipe Anal Fonct, Inst Math Jussieu, F-75230 Paris 05, France
Ecole Normale Super, DMA, F-75230 Paris 05, FranceUniv Paris 06, Equipe Anal Fonct, Inst Math Jussieu, F-75230 Paris 05, France
De La Salle, Mikael
[1
,2
]
机构:
[1] Univ Paris 06, Equipe Anal Fonct, Inst Math Jussieu, F-75230 Paris 05, France
[2] Ecole Normale Super, DMA, F-75230 Paris 05, France
Non commutative probability;
complete isometrics between non commutative L-p spaces;
von Neumann algebra;
D O I:
暂无
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We prove some noncommutative analogues of a theorem proved by Plotkin and Rudin about isometries between subspaces of L-p-spaces. Let 0 < p < infinity, p not an even integer. The main result of this paper states that in the category of unital subspaces of noncommutative probability L-p-spaces, under some boundedness condition, the unital completely isometric maps come from *-isomorphisms of the underlying von Neumann algebras. Some applications are given, including to noncommutative H-p-spaces.