COMPLETE ISOMETRIES BETWEEN SUBSPACES OF NONCOMMUTATIVE Lp-SPACES

被引:0
|
作者
De La Salle, Mikael [1 ,2 ]
机构
[1] Univ Paris 06, Equipe Anal Fonct, Inst Math Jussieu, F-75230 Paris 05, France
[2] Ecole Normale Super, DMA, F-75230 Paris 05, France
关键词
Non commutative probability; complete isometrics between non commutative L-p spaces; von Neumann algebra;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove some noncommutative analogues of a theorem proved by Plotkin and Rudin about isometries between subspaces of L-p-spaces. Let 0 < p < infinity, p not an even integer. The main result of this paper states that in the category of unital subspaces of noncommutative probability L-p-spaces, under some boundedness condition, the unital completely isometric maps come from *-isomorphisms of the underlying von Neumann algebras. Some applications are given, including to noncommutative H-p-spaces.
引用
收藏
页码:265 / 298
页数:34
相关论文
共 50 条