Retrovirus envelope protein complex structure in situ studied by cryo-electron tomography

被引:231
|
作者
Förster, F
Medalia, O
Zauberman, N
Baumeister, W
Fass, D
机构
[1] Max Planck Inst Biochem, Abt Mol Strukturbiol, D-82152 Martinsried, Germany
[2] Weizmann Inst Sci, Dept Biol Struct, IL-76100 Rehovot, Israel
关键词
cryo-electron microscopy; single-particle analysis; Moloney murine leukemia virus;
D O I
10.1073/pnas.0409178102
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We used cryo-electron tomography in conjunction with single-particle averaging techniques to study the structures of frozen-hydrated envelope glycoprotein (Env) complexes on intact Moloney murine leukemia retrovirus particles. Cryo-electron tomography allows 3D imaging of viruses in toto at a resolution sufficient to locate individual macromolecules, and local averaging of abundant complexes substantially improves the resolution. The averaging of repetitive features in electron tomograms is hampered by a low signal-to-noise ratio and anisotropic resolution, which results from the "missing-wedge" effect. We developed an iterative 3D averaging algorithm that compensates for this effect and used it to determine the trimeric structure of Env to a resolution of 2.7 nm, at which individual domains can be resolved. Strikingly, the 3D reconstruction is shaped like a tripod in which the trimer penetrates the membrane at three distinct locations approximate to 4.5 nm apart from one another. The Env reconstruction allows tentative docking of the x-ray crystal structure of the receptor-binding domain. This study thus provides 3D structural information regarding the prefusion conformation of an intact unstained retrovirus surface protein.
引用
收藏
页码:4729 / 4734
页数:6
相关论文
共 50 条
  • [1] Cryo-electron tomographic structure of an immunodeficiency virus envelope complex in situ
    Zanetti, Giulia
    Briggs, John A. G.
    Gruenewald, Kay
    Sattentau, Quentin J.
    Fuller, Stephen D.
    PLOS PATHOGENS, 2006, 2 (08): : 0790 - 0797
  • [2] Solving Structure in Situ using Cryo-Electron Tomography and Correlative Methods
    Briggs, John A. G.
    BIOPHYSICAL JOURNAL, 2013, 104 (02) : 3A - 3A
  • [3] Cryo-electron microscopy and cryo-electron tomography of nanoparticles
    Stewart, Phoebe L.
    WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY, 2017, 9 (02)
  • [4] Cryo-electron tomography
    Doerr, Allison
    NATURE METHODS, 2017, 14 (01) : 34 - 34
  • [5] Developments of in situ Cryo-electron Tomography for Biological Applications
    Zhao, Guanfang
    Zou, Tianyi
    Cheng, Sihang
    Yu, Yang
    Wang, Huili
    Wang, Hongda
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2020, 41 (11): : 2335 - 2344
  • [6] In situ studies of membrane biology by cryo-electron tomography
    Keller, Jenny
    Fernandez-Busnadiego, Ruben
    CURRENT OPINION IN CELL BIOLOGY, 2024, 88
  • [7] Addressing cellular compartmentalization by in situ cryo-electron tomography
    Erdmann, Philipp S.
    Plitzko, Juergen M.
    Baumeister, Wolfgang
    CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2018, 34 : 89 - 99
  • [8] Visualizing chaperonin function in situ by cryo-electron tomography
    Wagner, Jonathan
    Carvajal, Alonso I.
    Bracher, Andreas
    Beck, Florian
    Wan, William
    Bohn, Stefan
    Koerner, Roman
    Baumeister, Wolfgang
    Fernandez-Busnadiego, Ruben
    Hartl, F. Ulrich
    NATURE, 2024, 633 (8029) : 459 - 464
  • [9] Developments in cryo-electron tomography for in situ structural analysis
    Dubrovsky, Anna
    Sorrentino, Simona
    Harapin, Jan
    Sapra, K. Tanuj
    Medalia, Ohad
    ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2015, 581 : 78 - 85
  • [10] Cryo-electron tomography
    Allison Doerr
    Nature Methods, 2017, 14 : 34 - 34