A family of transitive modular Lie superalgebras with depth one

被引:2
|
作者
Wen-De Liu [1 ]
Yong-Zheng Zhang
机构
[1] Harbin Normal Univ, Dept Math, Harbin 150080, Peoples R China
[2] NE Normal Univ, Dept Math, Changchun 130024, Peoples R China
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS | 2007年 / 50卷 / 10期
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
flag; divided power algebra; modular Lie superalgebra; embedding theorem;
D O I
10.1007/s11425-007-0107-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The embedding theorem is established for Z-graded transitive modular Lie superalgebras g = circle plus-1 <= i <= rg(i) satisfying the conditions: (i) g(0) similar or equal to p(g-1) and g(0)-module g(-1) is isornorphic to the natural p(g(-1))-module; (ii) dim g(1) = 2/3n(2n(2) + 1), where n = 1/2 dim g(-1). In particular, it is proved that the finite-dimensional simple modular Lie superalgebras satisfying the conditions above are isornorphic to the odd Hamiltonian superalgebras. The restricted Lie superalgebras are also considered.
引用
收藏
页码:1451 / 1466
页数:16
相关论文
共 50 条