Controlled hydrophobic modification of cellulose nanocrystals for tunable Pickering emulsions

被引:8
|
作者
Dudefoi, William [2 ]
Dhuiege, Benjamin [1 ]
Capron, Isabelle [2 ]
Sebe, Gilles [1 ]
机构
[1] Univ Bordeaux, LCPO, Bordeaux INP, CNRS,UMR 5629, F-33600 Pessac, France
[2] INRAE, UR BIA, F-44316 Nantes, France
关键词
Cellulose nanocrystals; Surface acylation; Hydrophobic modification; Pickering emulsions; WATER; COALESCENCE; INTERFACE; BEHAVIOR; SILICA;
D O I
10.1016/j.carpta.2022.100210
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
This work gives a comprehensive view of the surface acylation of cellulose nanocrystals (CNCs), as a tool to monitor Pickering emulsions. It investigates the impact of the grafted chain length and surface degree of substitution (DSsurf), on the type (direct or inverse) of such emulsions. CNC samples were prepared by grafting 10 different linear acyl groups containing 2 to 18 carbons, with reaction times from 30 min to 5 h to vary the DSsurf. The grafting was evaluated by FT-IR and C-13 CP-MAS NMR spectroscopies. Whatever the DSSurf, CNCs grafted with linear acyl chains of 2 to 6 carbons led to the exclusive formation of direct oil-in-water (O/W) emulsions with hexadecane. Distinctively, both O/W and water-in-oil (W/O) emulsions could be obtained when the linear chain contained 8 carbons or more, at low and high DS(Sur)f, respectively. By adjusting the length of the grafted chain, DSSurf and particles concentration, we were able to monitor the type of emulsion formed, droplet size and surface coverage at the oil/water interface.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Some modification of cellulose nanocrystals for functional Pickering emulsions
    Saidane, Dorra
    Perrin, Emilie
    Cherhal, Fanch
    Guellec, Florian
    Capron, Isabelle
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2016, 374 (2072):
  • [2] Cellulose nanocrystals for Pickering emulsions
    Capron, Isabelle
    Bizot, Herve
    Cathala, Bernard
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [3] Pickering Emulsions Electrostatically Stabilized by Cellulose Nanocrystals
    Varanasi, Swambabu
    Henzel, Leeav
    Mendoza, Llyza
    Prathapan, Ragesh
    Batchelor, Warren
    Tabor, Rico
    Garnier, Gil
    FRONTIERS IN CHEMISTRY, 2018, 6
  • [4] Pickering emulsions stabilized by spherical cellulose nanocrystals
    Dong, Hui
    Ding, Qijun
    Jiang, Yifei
    Li, Xia
    Han, Wenjia
    Carbohydrate Polymers, 2021, 265
  • [5] Pickering emulsions stabilized by spherical cellulose nanocrystals
    Dong, Hui
    Ding, Qijun
    Jiang, Yifei
    Li, Xia
    Han, Wenjia
    CARBOHYDRATE POLYMERS, 2021, 265
  • [6] Phase Diagram of Pickering Emulsions Stabilized by Cellulose Nanocrystals
    Perrin, Louise
    Desobry-Banon, Sylvie
    Gillet, Guillaume
    Desobry, Stephane
    POLYMERS, 2023, 15 (13)
  • [7] New Pickering Emulsions Stabilized by Bacterial Cellulose Nanocrystals
    Kalashnikova, Irina
    Bizot, Herve
    Cathala, Bernard
    Capron, Isabelle
    LANGMUIR, 2011, 27 (12) : 7471 - 7479
  • [8] Surface modification improves fabrication of pickering high internal phase emulsions stabilized by cellulose nanocrystals
    Chen, Qiu-Hong
    Zheng, Jie
    Xu, Yan-Teng
    Yin, Shou-Wei
    Liu, Fu
    Tang, Chuan-He
    FOOD HYDROCOLLOIDS, 2018, 75 : 125 - 130
  • [9] Entrapment of bacterial cellulose nanocrystals stabilized Pickering emulsions droplets in alginate beads for hydrophobic drug delivery
    Yan, Huiqiong
    Chen, Xiuqiong
    Feng, Meixi
    Shi, Zaifeng
    Zhang, Wei
    Wang, Yue
    Ke, Chaoran
    Lin, Qiang
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2019, 177 : 112 - 120
  • [10] Antiscaling Pickering Emulsions Enabled by Amphiphilic Hairy Cellulose Nanocrystals
    Koshani, Roya
    Yeh, Shang-Lin
    Pitcher, Mica L.
    Sheikhi, Amir
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (32) : 42802 - 42815