A scalable nonparametric specification testing for massive data

被引:3
|
作者
Zhao, Yanyan [1 ,2 ]
Zou, Changliang [1 ,2 ]
Wang, Zhaojun [1 ,2 ]
机构
[1] Nankai Univ, Inst Stat, Tianjin, Peoples R China
[2] Nankai Univ, LPMC, Tianjin, Peoples R China
关键词
Adaptive test; Asymptotic normality; Lack-of-fit test; Rate-optimal; Sample-splitting method; OF-FIT TESTS; REGRESSION-CURVES; FUNCTIONAL FORM; CONSISTENT TEST; MODEL; SELECTION; EQUALITY; RATES;
D O I
10.1016/j.jspi.2018.09.012
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Lack-of-fit checking for parametric models is essential in reducing misspecification. However, for massive data sets which are increasingly prevalent, classical tests become prohibitively costly in computation and their feasibility is questionable even with modern parallel computing platforms. Building on the divide and conquer strategy, we propose a new nonparametric testing method, that is fast to compute and easy to implement with only one tuning parameter determined by a given time budget. Under mild conditions, we show that the proposed test statistic is asymptotically equivalent to that based on the whole data. Benefiting from using the sample-splitting idea for choosing the smoothing parameter, the proposed test is able to retain the type-I error rate pretty well with asymptotic distributions and achieves adaptive rate-optimal detection properties. Its advantage relative to existing methods is also demonstrated in numerical simulations and a data illustration. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:161 / 175
页数:15
相关论文
共 50 条
  • [1] Nonparametric dynamic panel data models: Kernel estimation and specification testing
    Su, Liangjun
    Lu, Xun
    [J]. JOURNAL OF ECONOMETRICS, 2013, 176 (02) : 112 - 133
  • [2] Nonparametric Specification Testing for Signal Models
    Pawlak, Miroslaw
    Stadtmueller, Ulrich
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (10) : 6434 - 6448
  • [3] A simple framework for nonparametric specification testing
    Ellison, G
    Ellison, SF
    [J]. JOURNAL OF ECONOMETRICS, 2000, 96 (01) : 1 - 23
  • [4] Nonparametric Specification Testing for Hammerstein Systems
    Pawlak, Miroslaw
    Lv, Jiaqing
    [J]. IFAC PAPERSONLINE, 2015, 48 (28): : 392 - 397
  • [5] Nonparametric specification testing via the trinity of tests
    Gupta, Abhimanyu
    [J]. JOURNAL OF ECONOMETRICS, 2018, 203 (01) : 169 - 185
  • [6] Nonparametric testing for the specification of spatial trend functions
    Zhang, Rongmao
    Chan, Ngai Hang
    Chi, Changxiong
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2023, 196
  • [7] Specification testing in nonparametric instrumental variable estimation
    Horowitz, Joel L.
    [J]. JOURNAL OF ECONOMETRICS, 2012, 167 (02) : 383 - 396
  • [8] SPECIFICATION TESTING WHEN THE NULL IS NONPARAMETRIC OR SEMIPARAMETRIC
    Rodriguez-Poo, Juan M.
    Sperlich, Stefan
    Vieu, Philippe
    [J]. ECONOMETRIC THEORY, 2015, 31 (06) : 1281 - 1309
  • [9] SPECIFICATION TESTING IN NONPARAMETRIC INSTRUMENTAL QUANTILE REGRESSION
    Breunig, Christoph
    [J]. ECONOMETRIC THEORY, 2020, 36 (04) : 583 - 625
  • [10] Scalable Nonparametric Multiway Data Analysis
    Zhe, Shandian
    Xu, Zenglin
    Chu, Xinqi
    Qi, Yuan
    Park, Youngja
    [J]. ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 38, 2015, 38 : 1125 - 1134