Classification method for heterogeneity in monoclonal cell population

被引:0
|
作者
Aburatani, S. [1 ]
Tashiro, K. [2 ]
Kuhara, S. [2 ]
机构
[1] AIST, BRIDD, Koto Ku, AIST Tokyo Waterfront BioIT Res Bldg,2-4-7 Aomi, Tokyo 1350064, Japan
[2] Kyushu Univ, Grad Sch Biores Bioenv Sci, Dept Syst Life Sci, Higashi Ku, Fukuoka, Fukuoka 8128581, Japan
关键词
D O I
10.1088/1742-6596/633/1/012077
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Monoclonal cell populations are known to be composed of heterogeneous sub-populations, thus complicating the data analysis. To gain clear insights into the mechanisms of cellular systems, biological data from a homogeneous cell population should be obtained. In this study, we developed a method based on Latent Profile Analysis (LPA) combined with Confirmatory Factor Analysis (CFA) to divide mixed data into classes, depending on their heterogeneity. In general cluster analysis, the number of measured points is a constraint, and thereby the data must be classified into fewer groups than the number of samples. By our newly developed method, the measured data can be divided into groups depending on their latent effects, without constraints. Our method is useful to clarify all types of omics data, including transcriptome, proteome and metabolic information.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Development of a new classification approach for detecting the heterogeneity in cell population
    Aburatani, S.
    Tamura, T.
    FEBS OPEN BIO, 2018, 8 : 454 - 454
  • [2] A Monte Carlo method to estimate cell population heterogeneity from cell snapshot data
    Lambert, Ben
    Gavaghan, David J.
    Tavener, Simon J.
    JOURNAL OF THEORETICAL BIOLOGY, 2021, 511
  • [3] A Bayesian Method for Characterizing Population Heterogeneity
    Stahl, Dale O.
    GAMES, 2019, 10 (04):
  • [4] Multi-label transcriptional classification of colorectal cancer reflects tumour cell population heterogeneity
    Medico, E.
    Cascianelli, S.
    Barbera, C.
    Lupo, B.
    Pasini, D.
    Bertotti, A.
    Trusolino, L.
    Masseroli, M.
    Isella, C.
    ANNALS OF ONCOLOGY, 2023, 34 : S177 - S177
  • [5] Multi-label transcriptional classification of colorectal cancer reflects tumor cell population heterogeneity
    Silvia Cascianelli
    Chiara Barbera
    Alexandra Ambra Ulla
    Elena Grassi
    Barbara Lupo
    Diego Pasini
    Andrea Bertotti
    Livio Trusolino
    Enzo Medico
    Claudio Isella
    Marco Masseroli
    Genome Medicine, 15
  • [6] Multi-label transcriptional classification of colorectal cancer reflects tumor cell population heterogeneity
    Cascianelli, Silvia
    Barbera, Chiara
    Ulla, Alexandra Ambra
    Grassi, Elena
    Lupo, Barbara
    Pasini, Diego
    Bertotti, Andrea
    Trusolino, Livio
    Medico, Enzo
    Isella, Claudio
    Masseroli, Marco
    GENOME MEDICINE, 2023, 15 (01)
  • [7] Heterogeneity in the muscle satellite cell population
    Biressi, Stefano
    Rando, Thomas A.
    SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2010, 21 (08) : 845 - 854
  • [8] Epigenetic heterogeneity in cancer cell population
    Aburatani, Hiroyuki
    CANCER SCIENCE, 2022, 113
  • [9] Nanoplasmonics for characterizing cell population heterogeneity
    Reinhard, Bjorn
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [10] Choice of method of place cell classification determines the population of cells identified
    Grijseels, Dori M.
    Shaw, Kira
    Barry, Caswell
    Hall, Catherine N.
    PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (07)