An inverse kinematic problem with internal sources

被引:4
|
作者
Pestov, Leonid [1 ]
Uhlmann, Gunther [2 ,3 ]
Zhou, Hanming [2 ]
机构
[1] Immanuel Kant Baltic Fed Univ, Kaliningrad, Russia
[2] Univ Washington, Dept Math, Seattle, WA 98195 USA
[3] Hong Kong Univ Sci & Technol, IAS, Hong Kong, Hong Kong, Peoples R China
关键词
inverse kinematic; internal data; conformal Killing vector fields; RIGIDITY;
D O I
10.1088/0266-5611/31/5/055006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a bounded domain M in R-n with a conformally Euclidean metric g = rho dx(2), we consider the inverse problem of recovering a semigeodesic neighborhood of a domain Gamma subset of partial derivative M and the conformal factor rho in the neighborhood from the travel time data (defined below) and the Cartesian coordinates of Gamma. We develop an explicit reconstruction procedure for this problem. The key ingredient is the relation between the reconstruction procedure and a Cauchy problem of the conformal Killing equation.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Numerical solution of internal inverse problem for anisotropic system with sources
    Kozdoba, L.A.
    Mudrikov, V.N.
    [J]. Inzhenerno-Fizicheskii Zhurnal, 1993, 65 (06): : 715 - 717
  • [2] MULTIDIMENSIONAL INVERSE KINEMATIC PROBLEM
    ANIKONOV, JE
    [J]. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 1992, 17 (4B): : 635 - 638
  • [3] Some approaches to a numerical solution for the multidimensional inverse kinematic problem of seismics with inner sources
    Anikonov, Yu. E.
    Bogdanov, V. V.
    Derevtsov, E. Yu.
    Miroshnichenko, V. L.
    Pivovarova, N. B.
    Slavina, L. B.
    [J]. JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2009, 17 (03): : 209 - 238
  • [4] Bioinspired Approach to Inverse Kinematic Problem
    Alkhatib, Rami
    Sabbah, Maher
    Diab, Mohamad O.
    Taha, Mohammad
    Salloum, Khalid
    [J]. BIOMEDICAL ENGINEERING AND COMPUTATIONAL INTELLIGENCE, BIOCOM 2018, 2020, 32 : 1 - 11
  • [5] The inverse kinematic problem in anisotropic media
    Uhlmann, G
    [J]. MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, WAVES 2003, 2003, : 39 - 45
  • [6] Differential relations in the inverse kinematic problem
    M. V. Neshchadim
    [J]. Doklady Mathematics, 2009, 79 : 76 - 78
  • [7] Differential relations in the inverse kinematic problem
    Neshchadim, M. V.
    [J]. DOKLADY MATHEMATICS, 2009, 79 (01) : 76 - 78
  • [8] On inverse kinematic seismic problem on the plane
    Belolipetskij, A.A.
    Golov, V.I.
    [J]. Vestnik Moskovskogo Universiteta. Ser. 15 Vychislitel'naya Matematika i Kibernetika, 1998, (02): : 46 - 47
  • [9] INVERSE PROBLEM FOR RANDOM SOURCES
    DEVANEY, AJ
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1979, 20 (08) : 1687 - 1691
  • [10] INVERSE PROBLEM FOR RANDOM SOURCES
    DEVANEY, AJ
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1978, 68 (10) : 1421 - 1421