Multivariate Decision Trees Using Different Splitting Attribute Subsets for Large Datasets

被引:0
|
作者
Franco-Arcega, Anilu [1 ]
Ariel Carrasco-Ochoa, Jose [1 ]
Sanchez-Diaz, Guillermo [2 ]
Fco Martinez-Trinidad, Jose [1 ]
机构
[1] Natl Inst Astrophys Opt & Elect, Dept Comp Sci, Luis Enrique Erro 1, Puebla 72840, Mexico
[2] Univ Guadalajara, CUValles, Computat Sci & Technol Dept, Guadalajara 46600, Jalisco, Mexico
关键词
Decision tree(DT); large datasets; supervised classification; INDUCTION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we introduce an incremental induction of multivariate decision tree algorithm, called IIMDTS, winch allows choosing a different splitting attribute subset in each internal node of the decision tree and it processes large datasets. IIMDTS uses all instances of the training set for building the decision tree without storing the whole training set in memory. Experimental results show that our algorithm is faster than three of the most recent algorithms for building decision trees for large datasets.
引用
收藏
页码:370 / +
页数:2
相关论文
共 50 条
  • [1] Decision tree induction using a fast splitting attribute selection for large datasets
    Franco-Arcega, A.
    Carrasco-Ochoa, J. A.
    Sanchez-Diaz, G.
    Fco Martinez-Trinidad, J.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (11) : 14290 - 14300
  • [2] A New Incremental Algorithm for Induction of Multivariate Decision Trees for Large Datasets
    Franco-Arcega, Anilu
    Ariel Carrasco-Ochoa, J.
    Sanchez-Diaz, Guillermo
    Martinez-Trinidad, J. Fco
    [J]. INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2008, 2008, 5326 : 282 - +
  • [3] UNIFYING ATTRIBUTE SPLITTING CRITERIA OF DECISION TREES BY TSALLIS ENTROPY
    Wang, Yisen
    Xia, Shu-Tao
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 2507 - 2511
  • [4] Decision trees using local support vector regression models for large datasets
    Tran-Nguyen, Minh-Thu
    Bui, Le-Diem
    Do, Thanh-Nghi
    [J]. JOURNAL OF INFORMATION AND TELECOMMUNICATION, 2020, 4 (01) : 17 - 35
  • [5] A Parallel Algorithm to Induce Decision Trees for Large Datasets
    Franco-Arcega, A.
    Suarez-Cansino, J.
    Flores-Flores, L. G.
    [J]. 2013 XXIV INTERNATIONAL SYMPOSIUM ON INFORMATION, COMMUNICATION AND AUTOMATION TECHNOLOGIES (ICAT), 2013,
  • [6] MANY-ATTRIBUTE DECISION MAKING USING ITERATIVE ATTRIBUTE SUBSETS
    Ziegler, Laura
    Lewis, Kemper
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2016, VOL 2A, 2016,
  • [7] Disentangling error structures of precipitation datasets using decision trees
    Sui, Xinxin
    Li, Zhi
    Tang, Guoqiang
    Yang, Zong-Liang
    Niyogi, Dev
    [J]. REMOTE SENSING OF ENVIRONMENT, 2022, 280
  • [8] Using decision trees to infer semantic functions of attribute grammars
    Zvada, S.
    Gyimóthy, T.
    [J]. Acta Cybernetica, 2001, 15 (02): : 279 - 304
  • [9] Induction of Multivariate Decision Trees by Using Dipolar Criteria
    Bobrowski, Leon
    Kretowski, Marek
    [J]. LECTURE NOTES IN COMPUTER SCIENCE <D>, 2000, 1910 : 331 - 336
  • [10] Predictive analytics of insurance claims using multivariate decision trees
    Quan, Zhiyu
    Valdez, Emiliano A.
    [J]. DEPENDENCE MODELING, 2018, 6 (01): : 377 - 407