Travelling wave solutions for a second order wave equation of KdV type

被引:5
|
作者
Long Yao [1 ]
Li Ji-bin
Rui Wei-guo
He Bin
机构
[1] Honghe Univ, Dept Math, Mengzi 661100, Yunnan Prov, Peoples R China
[2] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang Prov, Peoples R China
[3] Kunming Univ Sci & Technol, Sch Sci, Kunming 650093, Peoples R China
基金
中国国家自然科学基金;
关键词
solitary wave solution; periodic wave solution; kink wave and anti-kink wave solutions; smooth and non-smooth periodic waves;
D O I
10.1007/s10483-007-1105-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The theory of planar dynamical systems is used to study the dynamical behaviours of travelling wave solutions of a nonlinear wave equations of KdV type. In different regions of the parametric space, sufficient conditions to guarantee the existence of solitary wave solutions, periodic wave solutions, kink and anti-kink wave solutions are given. All possible exact explicit parametric representations are obtained for these waves.
引用
收藏
页码:1455 / 1465
页数:11
相关论文
共 50 条